Surface electromyography-based analysis of the lower limb muscle network and muscle synergies at various gait speeds

Gait movement is an important activity in daily human life. The coordination of gait movement is directly affected by the cooperation and functional connectivity between muscles. However, the mechanisms of muscle operation at different gait speeds remain unclear. Therefore, this study addressed the...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 31; p. 1
Main Authors Liang, Tie, Miao, Huacong, Wang, Hongrui, Liu, Xiaoguang, Liu, Xiuling
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1534-4320
1558-0210
1558-0210
DOI10.1109/TNSRE.2023.3242911

Cover

Loading…
More Information
Summary:Gait movement is an important activity in daily human life. The coordination of gait movement is directly affected by the cooperation and functional connectivity between muscles. However, the mechanisms of muscle operation at different gait speeds remain unclear. Therefore, this study addressed the gait speed effect on the changes in cooperative modules and functional connectivity between muscles. To this end, surface electromyography (sEMG) signals were collected from eight key lower extremity muscles of twelve healthy subjects walking on a treadmill at high, middle, and low motion speeds. Nonnegative matrix factorization (NNMF) was applied to the sEMG envelope and intermuscular coherence matrix, yielding five muscle synergies. Muscle functional networks were constructed by decomposing the intermuscular coherence matrix, revealing different layers of functional muscle networks across frequencies. In addition, the coupling strength between cooperative muscles grew with gait speed. Different coordination patterns among muscles with changes in gait speed related to the neuromuscular system regulation were identified.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1534-4320
1558-0210
1558-0210
DOI:10.1109/TNSRE.2023.3242911