A Cross-Scale Transformer and Triple-View Attention Based Domain-Rectified Transfer Learning for EEG Classification in RSVP Tasks
Rapid serial visual presentation (RSVP)-based brain-computer interface (BCI) is a promising target detection technique by using electroencephalogram (EEG) signals. However, existing deep learning approaches seldom considered dependencies of multi-scale temporal features and discriminative multi-view...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 32; pp. 672 - 683 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rapid serial visual presentation (RSVP)-based brain-computer interface (BCI) is a promising target detection technique by using electroencephalogram (EEG) signals. However, existing deep learning approaches seldom considered dependencies of multi-scale temporal features and discriminative multi-view spectral features simultaneously, which limits the representation learning ability of the model and undermine the EEG classification performance. In addition, recent transfer learning-based methods generally failed to obtain transferable cross-subject invariant representations and commonly ignore the individual-specific information, leading to the poor cross-subject transfer performance. In response to these limitations, we propose a cross-scale Transformer and triple-view attention based domain-rectified transfer learning (CST-TVA-DRTL) for the RSVP classification. Specially, we first develop a cross-scale Transformer (CST) to extract multi-scale temporal features and exploit the dependencies of different scales features. Then, a triple-view attention (TVA) is designed to capture spectral features from triple views of multi-channel time-frequency images. Finally, a domain-rectified transfer learning (DRTL) framework is proposed to simultaneously obtain transferable domain-invariant representations and untransferable domain-specific representations, then utilize domain-specific information to rectify domain-invariant representations to adapt to target data. Experimental results on two public RSVP datasets suggests that our CST-TVA-DRTL outperforms the state-of-the-art methods in the RSVP classification task. The source code of our model is publicly available in https://github.com/ljbuaa/CST_TVA_DRTL . |
---|---|
AbstractList | Rapid serial visual presentation (RSVP)-based brain-computer interface (BCI) is a promising target detection technique by using electroencephalogram (EEG) signals. However, existing deep learning approaches seldom considered dependencies of multi-scale temporal features and discriminative multi-view spectral features simultaneously, which limits the representation learning ability of the model and undermine the EEG classification performance. In addition, recent transfer learning-based methods generally failed to obtain transferable cross-subject invariant representations and commonly ignore the individual-specific information, leading to the poor cross-subject transfer performance. In response to these limitations, we propose a cross-scale Transformer and triple-view attention based domain-rectified transfer learning (CST-TVA-DRTL) for the RSVP classification. Specially, we first develop a cross-scale Transformer (CST) to extract multi-scale temporal features and exploit the dependencies of different scales features. Then, a triple-view attention (TVA) is designed to capture spectral features from triple views of multi-channel time-frequency images. Finally, a domain-rectified transfer learning (DRTL) framework is proposed to simultaneously obtain transferable domain-invariant representations and untransferable domain-specific representations, then utilize domain-specific information to rectify domain-invariant representations to adapt to target data. Experimental results on two public RSVP datasets suggests that our CST-TVA-DRTL outperforms the state-of-the-art methods in the RSVP classification task. The source code of our model is publicly available in https://github.com/ljbuaa/CST_TVA_DRTL.Rapid serial visual presentation (RSVP)-based brain-computer interface (BCI) is a promising target detection technique by using electroencephalogram (EEG) signals. However, existing deep learning approaches seldom considered dependencies of multi-scale temporal features and discriminative multi-view spectral features simultaneously, which limits the representation learning ability of the model and undermine the EEG classification performance. In addition, recent transfer learning-based methods generally failed to obtain transferable cross-subject invariant representations and commonly ignore the individual-specific information, leading to the poor cross-subject transfer performance. In response to these limitations, we propose a cross-scale Transformer and triple-view attention based domain-rectified transfer learning (CST-TVA-DRTL) for the RSVP classification. Specially, we first develop a cross-scale Transformer (CST) to extract multi-scale temporal features and exploit the dependencies of different scales features. Then, a triple-view attention (TVA) is designed to capture spectral features from triple views of multi-channel time-frequency images. Finally, a domain-rectified transfer learning (DRTL) framework is proposed to simultaneously obtain transferable domain-invariant representations and untransferable domain-specific representations, then utilize domain-specific information to rectify domain-invariant representations to adapt to target data. Experimental results on two public RSVP datasets suggests that our CST-TVA-DRTL outperforms the state-of-the-art methods in the RSVP classification task. The source code of our model is publicly available in https://github.com/ljbuaa/CST_TVA_DRTL. Rapid serial visual presentation (RSVP)-based brain-computer interface (BCI) is a promising target detection technique by using electroencephalogram (EEG) signals. However, existing deep learning approaches seldom considered dependencies of multi-scale temporal features and discriminative multi-view spectral features simultaneously, which limits the representation learning ability of the model and undermine the EEG classification performance. In addition, recent transfer learning-based methods generally failed to obtain transferable cross-subject invariant representations and commonly ignore the individual-specific information, leading to the poor cross-subject transfer performance. In response to these limitations, we propose a cross-scale Transformer and triple-view attention based domain-rectified transfer learning (CST-TVA-DRTL) for the RSVP classification. Specially, we first develop a cross-scale Transformer (CST) to extract multi-scale temporal features and exploit the dependencies of different scales features. Then, a triple-view attention (TVA) is designed to capture spectral features from triple views of multi-channel time-frequency images. Finally, a domain-rectified transfer learning (DRTL) framework is proposed to simultaneously obtain transferable domain-invariant representations and untransferable domain-specific representations, then utilize domain-specific information to rectify domain-invariant representations to adapt to target data. Experimental results on two public RSVP datasets suggests that our CST-TVA-DRTL outperforms the state-of-the-art methods in the RSVP classification task. The source code of our model is publicly available in https://github.com/ljbuaa/CST_TVA_DRTL . |
Author | Cui, Weigang Chen, Huiling Li, Yang Luo, Jie Wang, Lina Xu, Song |
Author_xml | – sequence: 1 givenname: Jie orcidid: 0009-0005-2948-9262 surname: Luo fullname: Luo, Jie email: luojiecn@buaa.edu.cn organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing, China – sequence: 2 givenname: Weigang orcidid: 0000-0002-7983-9161 surname: Cui fullname: Cui, Weigang email: cwg1994@buaa.edu.cn organization: School of Engineering Medicine, Beihang University, Beijing, China – sequence: 3 givenname: Song surname: Xu fullname: Xu, Song email: xusong618@163.com organization: National Key Laboratory of Science and Technology on Aerospace Intelligence Control, Beijing Aerospace Automatic Control Institute, Beijing, China – sequence: 4 givenname: Lina surname: Wang fullname: Wang, Lina email: violina@126.com organization: National Key Laboratory of Science and Technology on Aerospace Intelligence Control, Beijing Aerospace Automatic Control Institute, Beijing, China – sequence: 5 givenname: Huiling orcidid: 0000-0002-7714-9693 surname: Chen fullname: Chen, Huiling email: chenhuiling.jlu@gmail.com organization: College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, China – sequence: 6 givenname: Yang orcidid: 0000-0002-1751-1742 surname: Li fullname: Li, Yang email: liyang@buaa.edu.cn organization: Department of Automation Science and Electrical Engineering and the State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38285586$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kkuP0zAURiM0iHnAH0AIRWLDJsXPxFmWUoaRKkBtma117dyMXFJ7sFMhlvxz3McgNAtWtq_O-WT73svizAePRfGSkgmlpH23_rxazieMMDHhXLa0pU-KCyqlqgij5Gy_56ISnJHz4jKlDSG0qWXzrDjniqnM1RfF72k5iyGlamVhwHIdwac-xC3GEnyXz-5-wOrW4c9yOo7oRxd8-R4SduWHsAXnqyXa0fUOu5OczQVC9M7flTmpnM-vy9kAKWXIwsF3vlyubr-Wa0jf0_PiaQ9Dwhen9ar49nG-nn2qFl-ub2bTRWVFzcbKMsFkbxqOinW16ZuuNT3tay45BWtET2SNsu5QUmJsW6umNcrmCioCpAV-Vdwcc7sAG30f3RbiLx3A6UMhxDsNcXR2QM1th6YGIxVtBJgWmOGiMVI2tJeompz19ph1H8OPHaZRb12yOAzgMeySZi0jVDWSs4y-eYRuwi76_NI9xSmjNaOZen2idmaL3d_rPTQqA-oI2H23IvbauvHwm2MEN2hK9H4m9GEm9H4m9GkmssoeqQ_p_5VeHSWHiP8IgkohBP8DtczBVg |
CODEN | ITNSB3 |
CitedBy_id | crossref_primary_10_1016_j_bspc_2024_107375 crossref_primary_10_3390_math13050802 crossref_primary_10_1016_j_inffus_2025_102982 crossref_primary_10_1007_s11571_025_10224_2 crossref_primary_10_1038_s41597_024_03729_8 crossref_primary_10_1088_1741_2552_ad8efc |
Cites_doi | 10.1109/tnnls.2023.3326140 10.1088/1741-2552/aace8c 10.1109/MSP.2008.4408447 10.1109/TII.2023.3280560 10.3389/fnhum.2022.1077717 10.1109/EMBC44109.2020.9175581 10.26599/BSA.2022.9050007 10.1088/1741-2552/acb96f 10.1109/TCSII.2022.3208197 10.1109/TNSRE.2023.3322275 10.1109/LSP.2021.3095761 10.1016/j.future.2020.03.055 10.1109/TCDS.2022.3181469 10.1371/journal.pone.0178498 10.1109/TAFFC.2018.2885474 10.1109/TCYB.2021.3071860 10.1088/1741-2552/abca16 10.1109/TMI.2022.3151666 10.1088/1741-2552/ac5eb7 10.1016/j.neunet.2020.12.013 10.1109/TNSRE.2020.3048106 10.1109/TBME.2009.2012869 10.1109/BCI57258.2023.10078570 10.1109/TII.2023.3253188 10.1002/hbm.23730 10.1109/ICCV.2017.74 10.1088/1741-2552/ac6a7d 10.1109/TNSRE.2020.2973434 10.1109/TBME.2019.2913914 10.1109/TBME.2021.3130917 10.1109/TAFFC.2019.2942587 10.1109/TNSRE.2022.3145515 10.1109/tcss.2023.3291950 10.1109/TNSRE.2022.3230250 10.1016/j.asoc.2023.110513 10.1109/TII.2022.3167470 10.1109/TCYB.2022.3194099 10.1109/TAFFC.2022.3199075 10.3389/fnins.2020.568000 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 DOA |
DOI | 10.1109/TNSRE.2024.3359191 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation |
EISSN | 1558-0210 |
EndPage | 683 |
ExternalDocumentID | oai_doaj_org_article_3cdeb6ab58174ab9a2b347b5571f5e87 38285586 10_1109_TNSRE_2024_3359191 10415444 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62325301; 62201023; U23A20335 funderid: 10.13039/501100001809 – fundername: Beijing Natural Science Foundation grantid: Z220017 funderid: 10.13039/501100004826 – fundername: Zhejiang Provincial Natural Science Foundation of China grantid: LZ23F030001 funderid: 10.13039/501100004731 – fundername: National Key Research and Development Program of China grantid: 2023YFC2416600 funderid: 10.13039/501100012166 |
GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c462t-c2425fb73e82d6bf7d9bf1f63531acb4f056e56de510bc96879b8ce56e80a09a3 |
IEDL.DBID | DOA |
ISSN | 1534-4320 1558-0210 |
IngestDate | Wed Aug 27 01:26:04 EDT 2025 Fri Jul 11 07:43:55 EDT 2025 Fri Jul 25 08:30:32 EDT 2025 Wed Feb 19 01:58:20 EST 2025 Tue Jul 01 00:43:30 EDT 2025 Thu Apr 24 22:51:59 EDT 2025 Wed Aug 27 02:17:03 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c462t-c2425fb73e82d6bf7d9bf1f63531acb4f056e56de510bc96879b8ce56e80a09a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7714-9693 0009-0005-2948-9262 0000-0002-7983-9161 0000-0002-1751-1742 |
OpenAccessLink | https://doaj.org/article/3cdeb6ab58174ab9a2b347b5571f5e87 |
PMID | 38285586 |
PQID | 2923121621 |
PQPubID | 85423 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1109_TNSRE_2024_3359191 doaj_primary_oai_doaj_org_article_3cdeb6ab58174ab9a2b347b5571f5e87 ieee_primary_10415444 crossref_primary_10_1109_TNSRE_2024_3359191 proquest_miscellaneous_2920187532 proquest_journals_2923121621 pubmed_primary_38285586 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 20240000 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
PublicationTitleAbbrev | TNSRE |
PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref14 ref36 ref31 Chen (ref26) ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 Li (ref30) ref24 ref23 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 Ganin (ref29) ref27 Kou (ref28) ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 Simonyan (ref37) |
References_xml | – ident: ref21 doi: 10.1109/tnnls.2023.3326140 – ident: ref5 doi: 10.1088/1741-2552/aace8c – ident: ref10 doi: 10.1109/MSP.2008.4408447 – ident: ref2 doi: 10.1109/TII.2023.3280560 – ident: ref3 doi: 10.3389/fnhum.2022.1077717 – ident: ref17 doi: 10.1109/EMBC44109.2020.9175581 – start-page: 1908 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref26 article-title: Catastrophic forgetting meets negative transfer: Batch spectral shrinkage for safe transfer learning – ident: ref8 doi: 10.26599/BSA.2022.9050007 – ident: ref9 doi: 10.1088/1741-2552/acb96f – ident: ref15 doi: 10.1109/TCSII.2022.3208197 – ident: ref24 doi: 10.1109/TNSRE.2023.3322275 – ident: ref19 doi: 10.1109/LSP.2021.3095761 – ident: ref41 doi: 10.1016/j.future.2020.03.055 – ident: ref40 doi: 10.1109/TCDS.2022.3181469 – ident: ref32 doi: 10.1371/journal.pone.0178498 – ident: ref34 doi: 10.1109/TAFFC.2018.2885474 – ident: ref23 doi: 10.1109/TCYB.2021.3071860 – ident: ref14 doi: 10.1088/1741-2552/abca16 – start-page: 16304 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref28 article-title: Stochastic normalization – ident: ref42 doi: 10.1109/TMI.2022.3151666 – ident: ref4 doi: 10.1088/1741-2552/ac5eb7 – ident: ref35 doi: 10.1016/j.neunet.2020.12.013 – ident: ref12 doi: 10.1109/TNSRE.2020.3048106 – ident: ref20 doi: 10.1109/TBME.2009.2012869 – ident: ref36 doi: 10.1109/BCI57258.2023.10078570 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. ident: ref37 article-title: Deep inside convolutional networks: Visualising image classification models and saliency maps – ident: ref38 doi: 10.1109/TII.2023.3253188 – ident: ref11 doi: 10.1002/hbm.23730 – ident: ref39 doi: 10.1109/ICCV.2017.74 – ident: ref16 doi: 10.1088/1741-2552/ac6a7d – start-page: 1180 volume-title: Proc. 32nd Int. Conf. Mach. Learn. ident: ref29 article-title: Unsupervised domain adaptation by backpropagation – ident: ref44 doi: 10.1109/TNSRE.2020.2973434 – ident: ref18 doi: 10.1109/TBME.2019.2913914 – ident: ref7 doi: 10.1109/TBME.2021.3130917 – ident: ref13 doi: 10.1109/TAFFC.2019.2942587 – ident: ref6 doi: 10.1109/TNSRE.2022.3145515 – ident: ref25 doi: 10.1109/tcss.2023.3291950 – ident: ref33 doi: 10.1109/TNSRE.2022.3230250 – ident: ref43 doi: 10.1016/j.asoc.2023.110513 – ident: ref1 doi: 10.1109/TII.2022.3167470 – ident: ref22 doi: 10.1109/TCYB.2022.3194099 – ident: ref27 doi: 10.1109/TAFFC.2022.3199075 – start-page: 6799 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref30 article-title: Extracting relationships by multi-domain matching – ident: ref31 doi: 10.3389/fnins.2020.568000 |
SSID | ssj0017657 |
Score | 2.4523895 |
Snippet | Rapid serial visual presentation (RSVP)-based brain-computer interface (BCI) is a promising target detection technique by using electroencephalogram (EEG)... |
SourceID | doaj proquest pubmed crossref ieee |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 672 |
SubjectTerms | Algorithms Brain Brain-Computer Interfaces Brain–computer interface Classification Computer applications Convolution Deep learning EEG Electric Power Supplies Electroencephalography Feature extraction Human-computer interface Humans Implants Information processing Invariants Learning Machine Learning Representations RSVP Source code Spectrogram Target detection Task analysis Temporal variations Transfer learning transformer Transformers Visual tasks |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoD6gXngUCBRkJuKAsiR9xctyWLRUSK7S7rXqLbGeCVoUs6maFxI1_zoyTrBakIm55-BHH39gztucbxl5J5xLrCh0bWelYKchR5gzEpgCiwgNRKHIU_jTNzs7Vx0t92TurB18YAAiHz2BEl2Evv1r5DS2VoYQrIo9Re2wPLbfOWWu7ZWCyQOuJEqxiJUUyeMgkxbvFdD6boC0o1EhKXaCJcsBuS-Ju0-RDvTMhBd7-PtDKzTpnmHtO77Lp8NXdkZOr0aZ1I__zL0LH_27WPXan10L5uIPNfXYLmgfs9S7jMF90dAP8DZ_9Qeb9kP0a8xNqSjzH_gW-GFRfuOa2qfCe1u7jiyX84OO27Y5T8mOcLSv-fvXNLpt4RqNsjcpvnxlz9jyvXziWxCeTDzxE66RzTKFWvmz4bH7xmS_s-mp9yM5PJ4uTs7iP5BB7lYk29mTY1M5IyEWVudpUhavTGpUdmVrvVI1qGOisAhwhnC-y3BQu9_gE8sQmhZWP2H6zauAJ49orkdTeu9TlCq1RqyWZfNrU0muAOmLp0J2l7_8MRdv4WgZzJynKgIaS0FD2aIjY222e7x3Jxz9THxNKtimJoDs8wE4te3kvpa_AZdbpHE0-FAYrnFTGaW3SWkNuInZIQNiprsNAxI4G0JX9aLIuBWnhIs0E1v1y-xrHAdrcsQ2sNiENxVfUUkTscQfWbeED1J_eUOkzdkAN7FaWjth-e72B56hrte5FkLHfhdgiAw priority: 102 providerName: IEEE |
Title | A Cross-Scale Transformer and Triple-View Attention Based Domain-Rectified Transfer Learning for EEG Classification in RSVP Tasks |
URI | https://ieeexplore.ieee.org/document/10415444 https://www.ncbi.nlm.nih.gov/pubmed/38285586 https://www.proquest.com/docview/2923121621 https://www.proquest.com/docview/2920187532 https://doaj.org/article/3cdeb6ab58174ab9a2b347b5571f5e87 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9QwFLZQT1wQS4FAqYwEXFBo4iWOj9MypUKiQjNp1VtkOzYaARnUScWZf857jjOaHoALxyTe9Jb4e16-R8grbm1hrJa54p3MhfA1-JzyudIeqfA80wIvCn86r84uxMcrebWT6gvPhI30wKPgjrjrvK2MlTVgZ2jVMMuFslKqMkhfx3vkMOdNwVTaP1CVVNMVmUIfNefLxRyCQSbecS51qctb01Bk60_pVf6MNOOMc3qf3EtQkc7GIT4gd3z_kLzepQWmzcgJQN_QxS3G7Ufk14yeYM_5EpTgaTPhU39NTd_BMy6w55cr_5POhmE880iPYUrr6Pv1d7Pq8wX-CgMg1FQZaiYy1i8UWqLz-QcaU2riYaPYK131dLG8_Ewbs_m62ScXp_Pm5CxP6RZyJyo25A6jj2AV9zXrKhtUp20oAyASXhpnRQCs5GXVeXBj63RVK21rB298XZhCG_6Y7PXr3j8lVDrBiuCcLW0tIGQ0kmNcJlXgTnofMlJO0m9dkgymxPjWxpik0G3UWIsaa5PGMvJ2W-fHyMTx19LHqNRtSWTRji_AttpkW-2_bCsj-2gSO90JJC8SGTmYbKRNLr9pGUJlVlYM-n65_QzOijswpvfrm1gGkyBKzjLyZLStbeMcuQRlXT37HyN_Tu6iNMa1ogOyN1zf-BeAngZ7GB3lMF50_A07vRX6 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSNALzxYWChgJuKAsiR95HLdlywLtCm3TqrfIdiZoVciiblZI3PjnzDjJakEq4paHH3H8jT1je75h7KW0NjQ200EiSx0oBSnKXAJBkgFR4YHIFDkKH0_jyan6eK7PO2d17wsDAP7wGQzp0u_llwu3oqUylHBF5DHqOruBE7-OWnet9aZBEntiT5RhFSgpwt5HJsze5tOT2RitQaGGUuoMjZRtdlMSe5smL-qNKckz93ehVq7WOv3sc3iHTfvvbg-dXAxXjR26n39ROv53w-6y250eykctcO6xa1DfZ682OYd53hIO8Nd89ged9wP2a8QPqCnBCfYw8LxXfuGSm7rEe1q9D87m8IOPmqY9UMn3cb4s-bvFNzOvgxmNsxWqv11mzNkxvX7hWBIfj99zH6-TTjL5Wvm85rOTs888N8uL5Q47PRznB5Ogi-UQOBWLJnBk2lQ2kZCKMrZVUma2iipUd2RknFUVKmKg4xJwjLAui9Mks6nDJ5CGJsyM3GVb9aKGR4xrp0RYOWcjmyq0R42WZPTppJJOA1QDFvXdWbjuz1C8ja-FN3jCrPBoKAgNRYeGAXuzzvO9pfn4Z-p9Qsk6JVF0-wfYqUUn8YV0JdjYWJ2i0YfiYISVKrFaJ1GlIU0GbIeAsFFdi4EB2-tBV3TjybIQpIeLKBZY94v1axwJaHvH1LBY-TQUYVFLMWAPW7CuC--h_viKSp-zW5P8-Kg4-jD99IRtU2PbdaY9ttVcruApal6Nfebl7TfBlyVM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Cross-Scale+Transformer+and+Triple-View+Attention+Based+Domain-Rectified+Transfer+Learning+for+EEG+Classification+in+RSVP+Tasks&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Luo%2C+Jie&rft.au=Cui%2C+Weigang&rft.au=Xu%2C+Song&rft.au=Wang%2C+Lina&rft.date=2024&rft.issn=1534-4320&rft.eissn=1558-0210&rft.volume=32&rft.spage=672&rft.epage=683&rft_id=info:doi/10.1109%2FTNSRE.2024.3359191&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSRE_2024_3359191 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |