A Cross-Scale Transformer and Triple-View Attention Based Domain-Rectified Transfer Learning for EEG Classification in RSVP Tasks

Rapid serial visual presentation (RSVP)-based brain-computer interface (BCI) is a promising target detection technique by using electroencephalogram (EEG) signals. However, existing deep learning approaches seldom considered dependencies of multi-scale temporal features and discriminative multi-view...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 32; pp. 672 - 683
Main Authors Luo, Jie, Cui, Weigang, Xu, Song, Wang, Lina, Chen, Huiling, Li, Yang
Format Journal Article
LanguageEnglish
Published United States IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rapid serial visual presentation (RSVP)-based brain-computer interface (BCI) is a promising target detection technique by using electroencephalogram (EEG) signals. However, existing deep learning approaches seldom considered dependencies of multi-scale temporal features and discriminative multi-view spectral features simultaneously, which limits the representation learning ability of the model and undermine the EEG classification performance. In addition, recent transfer learning-based methods generally failed to obtain transferable cross-subject invariant representations and commonly ignore the individual-specific information, leading to the poor cross-subject transfer performance. In response to these limitations, we propose a cross-scale Transformer and triple-view attention based domain-rectified transfer learning (CST-TVA-DRTL) for the RSVP classification. Specially, we first develop a cross-scale Transformer (CST) to extract multi-scale temporal features and exploit the dependencies of different scales features. Then, a triple-view attention (TVA) is designed to capture spectral features from triple views of multi-channel time-frequency images. Finally, a domain-rectified transfer learning (DRTL) framework is proposed to simultaneously obtain transferable domain-invariant representations and untransferable domain-specific representations, then utilize domain-specific information to rectify domain-invariant representations to adapt to target data. Experimental results on two public RSVP datasets suggests that our CST-TVA-DRTL outperforms the state-of-the-art methods in the RSVP classification task. The source code of our model is publicly available in https://github.com/ljbuaa/CST_TVA_DRTL .
AbstractList Rapid serial visual presentation (RSVP)-based brain-computer interface (BCI) is a promising target detection technique by using electroencephalogram (EEG) signals. However, existing deep learning approaches seldom considered dependencies of multi-scale temporal features and discriminative multi-view spectral features simultaneously, which limits the representation learning ability of the model and undermine the EEG classification performance. In addition, recent transfer learning-based methods generally failed to obtain transferable cross-subject invariant representations and commonly ignore the individual-specific information, leading to the poor cross-subject transfer performance. In response to these limitations, we propose a cross-scale Transformer and triple-view attention based domain-rectified transfer learning (CST-TVA-DRTL) for the RSVP classification. Specially, we first develop a cross-scale Transformer (CST) to extract multi-scale temporal features and exploit the dependencies of different scales features. Then, a triple-view attention (TVA) is designed to capture spectral features from triple views of multi-channel time-frequency images. Finally, a domain-rectified transfer learning (DRTL) framework is proposed to simultaneously obtain transferable domain-invariant representations and untransferable domain-specific representations, then utilize domain-specific information to rectify domain-invariant representations to adapt to target data. Experimental results on two public RSVP datasets suggests that our CST-TVA-DRTL outperforms the state-of-the-art methods in the RSVP classification task. The source code of our model is publicly available in https://github.com/ljbuaa/CST_TVA_DRTL.Rapid serial visual presentation (RSVP)-based brain-computer interface (BCI) is a promising target detection technique by using electroencephalogram (EEG) signals. However, existing deep learning approaches seldom considered dependencies of multi-scale temporal features and discriminative multi-view spectral features simultaneously, which limits the representation learning ability of the model and undermine the EEG classification performance. In addition, recent transfer learning-based methods generally failed to obtain transferable cross-subject invariant representations and commonly ignore the individual-specific information, leading to the poor cross-subject transfer performance. In response to these limitations, we propose a cross-scale Transformer and triple-view attention based domain-rectified transfer learning (CST-TVA-DRTL) for the RSVP classification. Specially, we first develop a cross-scale Transformer (CST) to extract multi-scale temporal features and exploit the dependencies of different scales features. Then, a triple-view attention (TVA) is designed to capture spectral features from triple views of multi-channel time-frequency images. Finally, a domain-rectified transfer learning (DRTL) framework is proposed to simultaneously obtain transferable domain-invariant representations and untransferable domain-specific representations, then utilize domain-specific information to rectify domain-invariant representations to adapt to target data. Experimental results on two public RSVP datasets suggests that our CST-TVA-DRTL outperforms the state-of-the-art methods in the RSVP classification task. The source code of our model is publicly available in https://github.com/ljbuaa/CST_TVA_DRTL.
Rapid serial visual presentation (RSVP)-based brain-computer interface (BCI) is a promising target detection technique by using electroencephalogram (EEG) signals. However, existing deep learning approaches seldom considered dependencies of multi-scale temporal features and discriminative multi-view spectral features simultaneously, which limits the representation learning ability of the model and undermine the EEG classification performance. In addition, recent transfer learning-based methods generally failed to obtain transferable cross-subject invariant representations and commonly ignore the individual-specific information, leading to the poor cross-subject transfer performance. In response to these limitations, we propose a cross-scale Transformer and triple-view attention based domain-rectified transfer learning (CST-TVA-DRTL) for the RSVP classification. Specially, we first develop a cross-scale Transformer (CST) to extract multi-scale temporal features and exploit the dependencies of different scales features. Then, a triple-view attention (TVA) is designed to capture spectral features from triple views of multi-channel time-frequency images. Finally, a domain-rectified transfer learning (DRTL) framework is proposed to simultaneously obtain transferable domain-invariant representations and untransferable domain-specific representations, then utilize domain-specific information to rectify domain-invariant representations to adapt to target data. Experimental results on two public RSVP datasets suggests that our CST-TVA-DRTL outperforms the state-of-the-art methods in the RSVP classification task. The source code of our model is publicly available in https://github.com/ljbuaa/CST_TVA_DRTL .
Author Cui, Weigang
Chen, Huiling
Li, Yang
Luo, Jie
Wang, Lina
Xu, Song
Author_xml – sequence: 1
  givenname: Jie
  orcidid: 0009-0005-2948-9262
  surname: Luo
  fullname: Luo, Jie
  email: luojiecn@buaa.edu.cn
  organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
– sequence: 2
  givenname: Weigang
  orcidid: 0000-0002-7983-9161
  surname: Cui
  fullname: Cui, Weigang
  email: cwg1994@buaa.edu.cn
  organization: School of Engineering Medicine, Beihang University, Beijing, China
– sequence: 3
  givenname: Song
  surname: Xu
  fullname: Xu, Song
  email: xusong618@163.com
  organization: National Key Laboratory of Science and Technology on Aerospace Intelligence Control, Beijing Aerospace Automatic Control Institute, Beijing, China
– sequence: 4
  givenname: Lina
  surname: Wang
  fullname: Wang, Lina
  email: violina@126.com
  organization: National Key Laboratory of Science and Technology on Aerospace Intelligence Control, Beijing Aerospace Automatic Control Institute, Beijing, China
– sequence: 5
  givenname: Huiling
  orcidid: 0000-0002-7714-9693
  surname: Chen
  fullname: Chen, Huiling
  email: chenhuiling.jlu@gmail.com
  organization: College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, China
– sequence: 6
  givenname: Yang
  orcidid: 0000-0002-1751-1742
  surname: Li
  fullname: Li, Yang
  email: liyang@buaa.edu.cn
  organization: Department of Automation Science and Electrical Engineering and the State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38285586$$D View this record in MEDLINE/PubMed
BookMark eNp9kkuP0zAURiM0iHnAH0AIRWLDJsXPxFmWUoaRKkBtma117dyMXFJ7sFMhlvxz3McgNAtWtq_O-WT73svizAePRfGSkgmlpH23_rxazieMMDHhXLa0pU-KCyqlqgij5Gy_56ISnJHz4jKlDSG0qWXzrDjniqnM1RfF72k5iyGlamVhwHIdwac-xC3GEnyXz-5-wOrW4c9yOo7oRxd8-R4SduWHsAXnqyXa0fUOu5OczQVC9M7flTmpnM-vy9kAKWXIwsF3vlyubr-Wa0jf0_PiaQ9Dwhen9ar49nG-nn2qFl-ub2bTRWVFzcbKMsFkbxqOinW16ZuuNT3tay45BWtET2SNsu5QUmJsW6umNcrmCioCpAV-Vdwcc7sAG30f3RbiLx3A6UMhxDsNcXR2QM1th6YGIxVtBJgWmOGiMVI2tJeompz19ph1H8OPHaZRb12yOAzgMeySZi0jVDWSs4y-eYRuwi76_NI9xSmjNaOZen2idmaL3d_rPTQqA-oI2H23IvbauvHwm2MEN2hK9H4m9GEm9H4m9GkmssoeqQ_p_5VeHSWHiP8IgkohBP8DtczBVg
CODEN ITNSB3
CitedBy_id crossref_primary_10_1016_j_bspc_2024_107375
crossref_primary_10_3390_math13050802
crossref_primary_10_1016_j_inffus_2025_102982
crossref_primary_10_1007_s11571_025_10224_2
crossref_primary_10_1038_s41597_024_03729_8
crossref_primary_10_1088_1741_2552_ad8efc
Cites_doi 10.1109/tnnls.2023.3326140
10.1088/1741-2552/aace8c
10.1109/MSP.2008.4408447
10.1109/TII.2023.3280560
10.3389/fnhum.2022.1077717
10.1109/EMBC44109.2020.9175581
10.26599/BSA.2022.9050007
10.1088/1741-2552/acb96f
10.1109/TCSII.2022.3208197
10.1109/TNSRE.2023.3322275
10.1109/LSP.2021.3095761
10.1016/j.future.2020.03.055
10.1109/TCDS.2022.3181469
10.1371/journal.pone.0178498
10.1109/TAFFC.2018.2885474
10.1109/TCYB.2021.3071860
10.1088/1741-2552/abca16
10.1109/TMI.2022.3151666
10.1088/1741-2552/ac5eb7
10.1016/j.neunet.2020.12.013
10.1109/TNSRE.2020.3048106
10.1109/TBME.2009.2012869
10.1109/BCI57258.2023.10078570
10.1109/TII.2023.3253188
10.1002/hbm.23730
10.1109/ICCV.2017.74
10.1088/1741-2552/ac6a7d
10.1109/TNSRE.2020.2973434
10.1109/TBME.2019.2913914
10.1109/TBME.2021.3130917
10.1109/TAFFC.2019.2942587
10.1109/TNSRE.2022.3145515
10.1109/tcss.2023.3291950
10.1109/TNSRE.2022.3230250
10.1016/j.asoc.2023.110513
10.1109/TII.2022.3167470
10.1109/TCYB.2022.3194099
10.1109/TAFFC.2022.3199075
10.3389/fnins.2020.568000
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOA
DOI 10.1109/TNSRE.2024.3359191
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database

MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 683
ExternalDocumentID oai_doaj_org_article_3cdeb6ab58174ab9a2b347b5571f5e87
38285586
10_1109_TNSRE_2024_3359191
10415444
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62325301; 62201023; U23A20335
  funderid: 10.13039/501100001809
– fundername: Beijing Natural Science Foundation
  grantid: Z220017
  funderid: 10.13039/501100004826
– fundername: Zhejiang Provincial Natural Science Foundation of China
  grantid: LZ23F030001
  funderid: 10.13039/501100004731
– fundername: National Key Research and Development Program of China
  grantid: 2023YFC2416600
  funderid: 10.13039/501100012166
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c462t-c2425fb73e82d6bf7d9bf1f63531acb4f056e56de510bc96879b8ce56e80a09a3
IEDL.DBID DOA
ISSN 1534-4320
1558-0210
IngestDate Wed Aug 27 01:26:04 EDT 2025
Fri Jul 11 07:43:55 EDT 2025
Fri Jul 25 08:30:32 EDT 2025
Wed Feb 19 01:58:20 EST 2025
Tue Jul 01 00:43:30 EDT 2025
Thu Apr 24 22:51:59 EDT 2025
Wed Aug 27 02:17:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-c2425fb73e82d6bf7d9bf1f63531acb4f056e56de510bc96879b8ce56e80a09a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7714-9693
0009-0005-2948-9262
0000-0002-7983-9161
0000-0002-1751-1742
OpenAccessLink https://doaj.org/article/3cdeb6ab58174ab9a2b347b5571f5e87
PMID 38285586
PQID 2923121621
PQPubID 85423
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_TNSRE_2024_3359191
doaj_primary_oai_doaj_org_article_3cdeb6ab58174ab9a2b347b5571f5e87
ieee_primary_10415444
crossref_primary_10_1109_TNSRE_2024_3359191
proquest_miscellaneous_2920187532
proquest_journals_2923121621
pubmed_primary_38285586
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref14
ref36
ref31
Chen (ref26)
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
Li (ref30)
ref24
ref23
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
Ganin (ref29)
ref27
Kou (ref28)
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Simonyan (ref37)
References_xml – ident: ref21
  doi: 10.1109/tnnls.2023.3326140
– ident: ref5
  doi: 10.1088/1741-2552/aace8c
– ident: ref10
  doi: 10.1109/MSP.2008.4408447
– ident: ref2
  doi: 10.1109/TII.2023.3280560
– ident: ref3
  doi: 10.3389/fnhum.2022.1077717
– ident: ref17
  doi: 10.1109/EMBC44109.2020.9175581
– start-page: 1908
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref26
  article-title: Catastrophic forgetting meets negative transfer: Batch spectral shrinkage for safe transfer learning
– ident: ref8
  doi: 10.26599/BSA.2022.9050007
– ident: ref9
  doi: 10.1088/1741-2552/acb96f
– ident: ref15
  doi: 10.1109/TCSII.2022.3208197
– ident: ref24
  doi: 10.1109/TNSRE.2023.3322275
– ident: ref19
  doi: 10.1109/LSP.2021.3095761
– ident: ref41
  doi: 10.1016/j.future.2020.03.055
– ident: ref40
  doi: 10.1109/TCDS.2022.3181469
– ident: ref32
  doi: 10.1371/journal.pone.0178498
– ident: ref34
  doi: 10.1109/TAFFC.2018.2885474
– ident: ref23
  doi: 10.1109/TCYB.2021.3071860
– ident: ref14
  doi: 10.1088/1741-2552/abca16
– start-page: 16304
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref28
  article-title: Stochastic normalization
– ident: ref42
  doi: 10.1109/TMI.2022.3151666
– ident: ref4
  doi: 10.1088/1741-2552/ac5eb7
– ident: ref35
  doi: 10.1016/j.neunet.2020.12.013
– ident: ref12
  doi: 10.1109/TNSRE.2020.3048106
– ident: ref20
  doi: 10.1109/TBME.2009.2012869
– ident: ref36
  doi: 10.1109/BCI57258.2023.10078570
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref37
  article-title: Deep inside convolutional networks: Visualising image classification models and saliency maps
– ident: ref38
  doi: 10.1109/TII.2023.3253188
– ident: ref11
  doi: 10.1002/hbm.23730
– ident: ref39
  doi: 10.1109/ICCV.2017.74
– ident: ref16
  doi: 10.1088/1741-2552/ac6a7d
– start-page: 1180
  volume-title: Proc. 32nd Int. Conf. Mach. Learn.
  ident: ref29
  article-title: Unsupervised domain adaptation by backpropagation
– ident: ref44
  doi: 10.1109/TNSRE.2020.2973434
– ident: ref18
  doi: 10.1109/TBME.2019.2913914
– ident: ref7
  doi: 10.1109/TBME.2021.3130917
– ident: ref13
  doi: 10.1109/TAFFC.2019.2942587
– ident: ref6
  doi: 10.1109/TNSRE.2022.3145515
– ident: ref25
  doi: 10.1109/tcss.2023.3291950
– ident: ref33
  doi: 10.1109/TNSRE.2022.3230250
– ident: ref43
  doi: 10.1016/j.asoc.2023.110513
– ident: ref1
  doi: 10.1109/TII.2022.3167470
– ident: ref22
  doi: 10.1109/TCYB.2022.3194099
– ident: ref27
  doi: 10.1109/TAFFC.2022.3199075
– start-page: 6799
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref30
  article-title: Extracting relationships by multi-domain matching
– ident: ref31
  doi: 10.3389/fnins.2020.568000
SSID ssj0017657
Score 2.4523895
Snippet Rapid serial visual presentation (RSVP)-based brain-computer interface (BCI) is a promising target detection technique by using electroencephalogram (EEG)...
SourceID doaj
proquest
pubmed
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 672
SubjectTerms Algorithms
Brain
Brain-Computer Interfaces
Brain–computer interface
Classification
Computer applications
Convolution
Deep learning
EEG
Electric Power Supplies
Electroencephalography
Feature extraction
Human-computer interface
Humans
Implants
Information processing
Invariants
Learning
Machine Learning
Representations
RSVP
Source code
Spectrogram
Target detection
Task analysis
Temporal variations
Transfer learning
transformer
Transformers
Visual tasks
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoD6gXngUCBRkJuKAsiR9xctyWLRUSK7S7rXqLbGeCVoUs6maFxI1_zoyTrBakIm55-BHH39gztucbxl5J5xLrCh0bWelYKchR5gzEpgCiwgNRKHIU_jTNzs7Vx0t92TurB18YAAiHz2BEl2Evv1r5DS2VoYQrIo9Re2wPLbfOWWu7ZWCyQOuJEqxiJUUyeMgkxbvFdD6boC0o1EhKXaCJcsBuS-Ju0-RDvTMhBd7-PtDKzTpnmHtO77Lp8NXdkZOr0aZ1I__zL0LH_27WPXan10L5uIPNfXYLmgfs9S7jMF90dAP8DZ_9Qeb9kP0a8xNqSjzH_gW-GFRfuOa2qfCe1u7jiyX84OO27Y5T8mOcLSv-fvXNLpt4RqNsjcpvnxlz9jyvXziWxCeTDzxE66RzTKFWvmz4bH7xmS_s-mp9yM5PJ4uTs7iP5BB7lYk29mTY1M5IyEWVudpUhavTGpUdmVrvVI1qGOisAhwhnC-y3BQu9_gE8sQmhZWP2H6zauAJ49orkdTeu9TlCq1RqyWZfNrU0muAOmLp0J2l7_8MRdv4WgZzJynKgIaS0FD2aIjY222e7x3Jxz9THxNKtimJoDs8wE4te3kvpa_AZdbpHE0-FAYrnFTGaW3SWkNuInZIQNiprsNAxI4G0JX9aLIuBWnhIs0E1v1y-xrHAdrcsQ2sNiENxVfUUkTscQfWbeED1J_eUOkzdkAN7FaWjth-e72B56hrte5FkLHfhdgiAw
  priority: 102
  providerName: IEEE
Title A Cross-Scale Transformer and Triple-View Attention Based Domain-Rectified Transfer Learning for EEG Classification in RSVP Tasks
URI https://ieeexplore.ieee.org/document/10415444
https://www.ncbi.nlm.nih.gov/pubmed/38285586
https://www.proquest.com/docview/2923121621
https://www.proquest.com/docview/2920187532
https://doaj.org/article/3cdeb6ab58174ab9a2b347b5571f5e87
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9QwFLZQT1wQS4FAqYwEXFBo4iWOj9MypUKiQjNp1VtkOzYaARnUScWZf857jjOaHoALxyTe9Jb4e16-R8grbm1hrJa54p3MhfA1-JzyudIeqfA80wIvCn86r84uxMcrebWT6gvPhI30wKPgjrjrvK2MlTVgZ2jVMMuFslKqMkhfx3vkMOdNwVTaP1CVVNMVmUIfNefLxRyCQSbecS51qctb01Bk60_pVf6MNOOMc3qf3EtQkc7GIT4gd3z_kLzepQWmzcgJQN_QxS3G7Ufk14yeYM_5EpTgaTPhU39NTd_BMy6w55cr_5POhmE880iPYUrr6Pv1d7Pq8wX-CgMg1FQZaiYy1i8UWqLz-QcaU2riYaPYK131dLG8_Ewbs_m62ScXp_Pm5CxP6RZyJyo25A6jj2AV9zXrKhtUp20oAyASXhpnRQCs5GXVeXBj63RVK21rB298XZhCG_6Y7PXr3j8lVDrBiuCcLW0tIGQ0kmNcJlXgTnofMlJO0m9dkgymxPjWxpik0G3UWIsaa5PGMvJ2W-fHyMTx19LHqNRtSWTRji_AttpkW-2_bCsj-2gSO90JJC8SGTmYbKRNLr9pGUJlVlYM-n65_QzOijswpvfrm1gGkyBKzjLyZLStbeMcuQRlXT37HyN_Tu6iNMa1ogOyN1zf-BeAngZ7GB3lMF50_A07vRX6
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSNALzxYWChgJuKAsiR95HLdlywLtCm3TqrfIdiZoVciiblZI3PjnzDjJakEq4paHH3H8jT1je75h7KW0NjQ200EiSx0oBSnKXAJBkgFR4YHIFDkKH0_jyan6eK7PO2d17wsDAP7wGQzp0u_llwu3oqUylHBF5DHqOruBE7-OWnet9aZBEntiT5RhFSgpwt5HJsze5tOT2RitQaGGUuoMjZRtdlMSe5smL-qNKckz93ehVq7WOv3sc3iHTfvvbg-dXAxXjR26n39ROv53w-6y250eykctcO6xa1DfZ682OYd53hIO8Nd89ged9wP2a8QPqCnBCfYw8LxXfuGSm7rEe1q9D87m8IOPmqY9UMn3cb4s-bvFNzOvgxmNsxWqv11mzNkxvX7hWBIfj99zH6-TTjL5Wvm85rOTs888N8uL5Q47PRznB5Ogi-UQOBWLJnBk2lQ2kZCKMrZVUma2iipUd2RknFUVKmKg4xJwjLAui9Mks6nDJ5CGJsyM3GVb9aKGR4xrp0RYOWcjmyq0R42WZPTppJJOA1QDFvXdWbjuz1C8ja-FN3jCrPBoKAgNRYeGAXuzzvO9pfn4Z-p9Qsk6JVF0-wfYqUUn8YV0JdjYWJ2i0YfiYISVKrFaJ1GlIU0GbIeAsFFdi4EB2-tBV3TjybIQpIeLKBZY94v1axwJaHvH1LBY-TQUYVFLMWAPW7CuC--h_viKSp-zW5P8-Kg4-jD99IRtU2PbdaY9ttVcruApal6Nfebl7TfBlyVM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Cross-Scale+Transformer+and+Triple-View+Attention+Based+Domain-Rectified+Transfer+Learning+for+EEG+Classification+in+RSVP+Tasks&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Luo%2C+Jie&rft.au=Cui%2C+Weigang&rft.au=Xu%2C+Song&rft.au=Wang%2C+Lina&rft.date=2024&rft.issn=1534-4320&rft.eissn=1558-0210&rft.volume=32&rft.spage=672&rft.epage=683&rft_id=info:doi/10.1109%2FTNSRE.2024.3359191&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSRE_2024_3359191
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon