A Cross-Scale Transformer and Triple-View Attention Based Domain-Rectified Transfer Learning for EEG Classification in RSVP Tasks

Rapid serial visual presentation (RSVP)-based brain-computer interface (BCI) is a promising target detection technique by using electroencephalogram (EEG) signals. However, existing deep learning approaches seldom considered dependencies of multi-scale temporal features and discriminative multi-view...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 32; pp. 672 - 683
Main Authors Luo, Jie, Cui, Weigang, Xu, Song, Wang, Lina, Chen, Huiling, Li, Yang
Format Journal Article
LanguageEnglish
Published United States IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Rapid serial visual presentation (RSVP)-based brain-computer interface (BCI) is a promising target detection technique by using electroencephalogram (EEG) signals. However, existing deep learning approaches seldom considered dependencies of multi-scale temporal features and discriminative multi-view spectral features simultaneously, which limits the representation learning ability of the model and undermine the EEG classification performance. In addition, recent transfer learning-based methods generally failed to obtain transferable cross-subject invariant representations and commonly ignore the individual-specific information, leading to the poor cross-subject transfer performance. In response to these limitations, we propose a cross-scale Transformer and triple-view attention based domain-rectified transfer learning (CST-TVA-DRTL) for the RSVP classification. Specially, we first develop a cross-scale Transformer (CST) to extract multi-scale temporal features and exploit the dependencies of different scales features. Then, a triple-view attention (TVA) is designed to capture spectral features from triple views of multi-channel time-frequency images. Finally, a domain-rectified transfer learning (DRTL) framework is proposed to simultaneously obtain transferable domain-invariant representations and untransferable domain-specific representations, then utilize domain-specific information to rectify domain-invariant representations to adapt to target data. Experimental results on two public RSVP datasets suggests that our CST-TVA-DRTL outperforms the state-of-the-art methods in the RSVP classification task. The source code of our model is publicly available in https://github.com/ljbuaa/CST_TVA_DRTL .
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1534-4320
1558-0210
1558-0210
DOI:10.1109/TNSRE.2024.3359191