Thyroid Hormones Enhance Mitochondrial Function in Human Epidermis

Since it is unknown whether thyroid hormones (THs) regulate mitochondrial function in human epidermis, we treated organ-cultured human skin, or isolated cultured human epidermal keratinocytes, with triiodothyronine (100 pmol/L) or thyroxine (100 nmol/L). Both THs significantly increased protein expr...

Full description

Saved in:
Bibliographic Details
Published inJournal of investigative dermatology Vol. 136; no. 10; pp. 2003 - 2012
Main Authors Vidali, Silvia, Chéret, Jérémy, Giesen, Melanie, Haeger, Swantje, Alam, Majid, Watson, Rachel E.B., Langton, Abigail K., Klinger, Matthias, Knuever, Jana, Funk, Wolfgang, Kofler, Barbara, Paus, Ralf
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.10.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Since it is unknown whether thyroid hormones (THs) regulate mitochondrial function in human epidermis, we treated organ-cultured human skin, or isolated cultured human epidermal keratinocytes, with triiodothyronine (100 pmol/L) or thyroxine (100 nmol/L). Both THs significantly increased protein expression of the mitochondrially encoded cytochrome C oxidase I (MTCO1), complex I activity, and the number of perinuclear mitochondria. Triiodothyronine also increased mitochondrial transcription factor A (TFAM) protein expression, and thyroxine stimulated complex II/IV activity. Increased mitochondrial function can correlate with increased reactive oxygen species production, DNA damage, and accelerated tissue aging. However, THs neither raised reactive oxygen species production or matrix metalloproteinase-1, -2 and -9 activity nor decreased sirtuin1 (Sirt1) immunoreactivity. Instead, triiodothyronine increased sirtuin-1, fibrillin-1, proliferator-activated receptor-gamma 1-alpha (PGC1α), collagen I and III transcription, and thyroxine decreased cyclin-dependent kinase inhibitor 2A (p16ink4) expression in organ-cultured human skin. Moreover, TH treatment increased intracutaneous fibrillin-rich microfibril and collagen III deposition and decreased mammalian target of rapamycin (mTORC1/2) expression ex vivo. This identifies THs as potent endocrine stimulators of mitochondrial function in human epidermis, which down-regulates rather than enhance the expression of skin aging-related biomarkers ex vivo. Therefore, topically applied THs deserve further exploration as candidate agents for treating skin conditions characterized by reduced mitochondrial function.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-202X
1523-1747
DOI:10.1016/j.jid.2016.05.118