Mechanism of voltage-dependent gating in skeletal muscle chloride channels
Voltage-dependent gating was investigated in a recombinant human skeletal muscle Cl- channel, hCIC-1, heterologously expressed in human embryonic kidney (HEK-293) cells. Gating was found to be mediated by two qualitatively distinct processes. One gating step operates on a microsecond time scale and...
Saved in:
Published in | Biophysical journal Vol. 71; no. 2; pp. 695 - 706 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.08.1996
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Voltage-dependent gating was investigated in a recombinant human skeletal muscle Cl- channel, hCIC-1, heterologously expressed in human embryonic kidney (HEK-293) cells. Gating was found to be mediated by two qualitatively distinct processes. One gating step operates on a microsecond time scale and involves the rapid rearrangement of two identical intramembranous voltage sensors, each consisting of a single titratable residue. The second process occurs on a millisecond time scale and is due to a blocking-unblocking reaction mediated by a cytoplasmic gate that interacts with the ion pore of the channel. These results illustrate a rather simple structural basis for voltage sensing that has evolved in skeletal muscle Cl- channels and provides evidence for the existence of a cytoplasmic gating mechanism in an anion channel analogous to the "ball and chain" mechanism of voltage-gated cation channels. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0006-3495 1542-0086 |
DOI: | 10.1016/S0006-3495(96)79269-X |