Rapid and Specific Detection of Listeria monocytogenes With an Isothermal Amplification and Lateral Flow Strip Combined Method That Eliminates False-Positive Signals From Primer-Dimers

is an important foodborne pathogenic bacterium that is explicitly threatening public health and food safety. Rapid, simple, and sensitive detection methods for this pathogen are of urgent need for the increasing on-site testing demands. Application of the isothermal recombinase polymerase amplificat...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in microbiology Vol. 10; p. 2959
Main Authors Wang, Lei, Zhao, Panpan, Si, Xinxin, Li, Juan, Dai, Xiaofang, Zhang, Kunxiao, Gao, Song, Dong, Jingquan
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 06.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:is an important foodborne pathogenic bacterium that is explicitly threatening public health and food safety. Rapid, simple, and sensitive detection methods for this pathogen are of urgent need for the increasing on-site testing demands. Application of the isothermal recombinase polymerase amplification (RPA) and the lateral flow strip (LFS) in the detection is promising for fast speed, high sensitivity, and little dependency on equipment and trained personnel. However, the simplicity comes with an intrinsic and non-negligible risk, the false-positive signals from primer-dimers. In this study, an improved RPA-LFS system was established for detection of that eliminated false-positive signals from primer-dimers. Primer candidates were carefully selected from the entire genome sequence and rigorously screened for specific amplifications in PCR and RPA reactions. For the optimal primer pairs, probes that matched the targeted fragment sequences, although had the smallest chance to form cross-dimers with the primers, were designed and screened. The intelligent use of the probe successfully linked the positive signal to the actual amplification product. This RPA-LFS system was highly specific to and was able to detect as low as 1 colony-forming unit of the bacterium per reaction (50 μl) without DNA purification, or 100 fg of the genomic DNA/50 μl. The amplification could be conducted under the temperature between 37 and 42°C, and the whole detection finished within 25 min. Test of artificially contaminated milk gave 100% accuracy of detection without purification of the samples. Various food samples spiked with 10 colony-forming unit of per 25 g or 25 ml were successfully detected after an enrichment time period of 6 h. The RPA-LFS system established in this study is a rapid, simple, and specific detection method for that has eliminated false-positive results from primer-dimers. In addition, this study has set a good example of eliminating the false-positive risk from primer-dimers in isothermal amplification-based detection methods, which is applicable to the development of detection technologies for other pathogens.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Reviewed by: Marcello Trevisani, University of Bologna, Italy; Nathan Tanner, New England Biolabs, United States
Edited by: Dario De Medici, Istituto Superiore di Sanità (ISS), Italy
These authors have contributed equally to this work
This article was submitted to Food Microbiology, a section of the journal Frontiers in Microbiology
ISSN:1664-302X
1664-302X
DOI:10.3389/fmicb.2019.02959