An Auxiliary Synthesis Framework for Enhancing EEG-Based Classification With Limited Data

While deep learning algorithms significantly improves the decoding performance of brain-computer interface (BCI) based on electroencephalogram (EEG) signals, the performance relies on a large number of high-resolution data for training. However, collecting sufficient usable EEG data is difficult due...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 31; pp. 2120 - 2131
Main Authors Liang, Sui, Kuang, Shaolong, Wang, Deheng, Yuan, Zhaohua, Zhang, Hongmiao, Sun, Lining
Format Journal Article
LanguageEnglish
Published United States IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1534-4320
1558-0210
1558-0210
DOI10.1109/TNSRE.2023.3268979

Cover

Loading…
More Information
Summary:While deep learning algorithms significantly improves the decoding performance of brain-computer interface (BCI) based on electroencephalogram (EEG) signals, the performance relies on a large number of high-resolution data for training. However, collecting sufficient usable EEG data is difficult due to the heavy burden on the subjects and the high experimental cost. To overcome this data insufficiency, a novel auxiliary synthesis framework is first introduced in this paper, which composes of a pre-trained auxiliary decoding model and a generative model. The framework learns the latent feature distributions of real data and uses Gaussian noise to synthesize artificial data. The experimental evaluation reveals that the proposed method effectively preserves the time-frequency-spatial features of the real data and enhances the classification performance of the model using limited training data and is easy to implement, which outperforms the common data augmentation methods. The average accuracy of the decoding model designed in this work is improved by (4.72±0.98)% on the BCI competition IV 2a dataset. Furthermore, the framework is applicable to other deep learning-based decoders. The finding provides a novel way to generate artificial signals for enhancing classification performance when there are insufficient data, thus reducing data acquisition consuming in the BCI field.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1534-4320
1558-0210
1558-0210
DOI:10.1109/TNSRE.2023.3268979