Glioma grading using structural magnetic resonance imaging and molecular data

A glioma grading method using conventional structural magnetic resonance image (MRI) and molecular data from patients is proposed. The noninvasive grading of glioma tumors is obtained using multiple radiomic texture features including dynamic texture analysis, multifractal detrended fluctuation anal...

Full description

Saved in:
Bibliographic Details
Published inJournal of medical imaging (Bellingham, Wash.) Vol. 6; no. 2; p. 024501
Main Authors Reza, Syed M S, Samad, Manar D, Shboul, Zeina A, Jones, Karra A, Iftekharuddin, Khan M
Format Journal Article
LanguageEnglish
Published United States Society of Photo-Optical Instrumentation Engineers 01.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A glioma grading method using conventional structural magnetic resonance image (MRI) and molecular data from patients is proposed. The noninvasive grading of glioma tumors is obtained using multiple radiomic texture features including dynamic texture analysis, multifractal detrended fluctuation analysis, and multiresolution fractal Brownian motion in structural MRI. The proposed method is evaluated using two multicenter MRI datasets: (1) the brain tumor segmentation (BRATS-2017) challenge for high-grade versus low-grade (LG) and (2) the cancer imaging archive (TCIA) repository for glioblastoma (GBM) versus LG glioma grading. The grading performance using MRI is compared with that of digital pathology (DP) images in the cancer genome atlas (TCGA) data repository. The results show that the mean area under the receiver operating characteristic curve (AUC) is 0.88 for the BRATS dataset. The classification of tumor grades using MRI and DP images in TCIA/TCGA yields mean AUC of 0.90 and 0.93, respectively. This work further proposes and compares tumor grading performance using molecular alterations ( mutations) along with MRI and DP data, following the most recent World Health Organization grading criteria, respectively. The overall grading performance demonstrates the efficacy of the proposed noninvasive glioma grading approach using structural MRI.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2329-4302
2329-4310
DOI:10.1117/1.jmi.6.2.024501