Wastewater application and water use of Larrea tridentata

Treated wastewater has been applied to agronomic crops, rangelands, forests and recreation areas including parks and golf courses, and to disturbed lands such as mine spoil sites. While land application systems are conventional technology for many communities, there is limited information to guide l...

Full description

Saved in:
Bibliographic Details
Published inAgricultural water management Vol. 82; no. 3; pp. 343 - 353
Main Authors Saucedo, D., Sammis, T.W., Picchioni, G.A., Mexal, J.G.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 24.04.2006
Elsevier Science
Elsevier
SeriesAgricultural Water Management
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Treated wastewater has been applied to agronomic crops, rangelands, forests and recreation areas including parks and golf courses, and to disturbed lands such as mine spoil sites. While land application systems are conventional technology for many communities, there is limited information to guide land managers in arid and semiarid environments where wastewater may be the only source of supplemental irrigation. In order to develop a creosote climate-based water balance irrigation scheduling model to irrigate a desert ecosystem using wastewater, a crop coefficient ( K c) for the creosote bush ( Larrea tridentata) must be determined. The objective of this study is to determine the K c and evapotranspiration rate of L. tridentata in non-water limiting conditions and to use the data for wastewater irrigation scheduling in the Chihuahuan desert. The study site, located in Las Cruces, New Mexico is semiarid with an average annual rainfall of 220 mm. Thirty L. tridentata shrubs were purchased from a commercial greenhouse in 19 l pots. The pots were weighed before an irrigation and 24 h after irrigation. The weight change was converted to depth of Et based on the area of the plots. Reference Et was determined from climate data and a crop coefficient calculated. A third order polynomial described the change in the crop coefficient with both day of year and growing degree days using a base and minimum cutoff temperature of 0 °C, no upper cutoff temperature and only data when the day length was greater than 11 h. The coefficient of determination was 0.76 using day of year and 0.77 using GDD. The crop coefficient was used in a water balance irrigation scheduling model to predict creosote water use under rainfall condition in the Chihuahuan desert.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0378-3774
1873-2283
DOI:10.1016/j.agwat.2005.07.031