The PPARGC1A locus and CNS-specific PGC-1α isoforms are associated with Parkinson's Disease

Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide. PGC-1α, encoded by PPARGC1A, is a transcriptional co-activator that has been implicated in the pathogenesis of neurodegenerative disorders. We recently discovered multiple new PPARGC1A transcripts that initi...

Full description

Saved in:
Bibliographic Details
Published inNeurobiology of disease Vol. 121; pp. 34 - 46
Main Authors Soyal, Selma M., Zara, Greta, Ferger, Boris, Felder, Thomas K., Kwik, Markus, Nofziger, Charity, Dossena, Silvia, Schwienbacher, Christine, Hicks, Andrew A., Pramstaller, Peter P., Paulmichl, Markus, Weis, Serge, Patsch, Wolfgang
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.01.2019
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide. PGC-1α, encoded by PPARGC1A, is a transcriptional co-activator that has been implicated in the pathogenesis of neurodegenerative disorders. We recently discovered multiple new PPARGC1A transcripts that initiate from a novel promoter located far upstream of the reference gene promoter, are CNS-specific and are more abundant than reference gene transcripts in whole brain. These CNS-specific transcripts encode two main full-length and several truncated isoforms via alternative splicing. Truncated CNS-isoforms include 17 kDa proteins that lack the second LXXLL motif serving as an interaction site for several nuclear receptors. We now determined expression levels of CNS- and reference gene transcripts in 5 brain regions of 21, 8, and 13 deceased subjects with idiopathic PD, Lewy body dementia and controls without neurodegenerative disorders, respectively. We observed reductions of CNS-specific transcripts (encoding full-length isoforms) only in the substantia nigra pars compacta of PD and Lewy body dementia. However, in the substantia nigra and globus pallidus of PD cases we found an up-regulation of transcripts encoding the 17 kDa proteins that inhibited the co-activation of several transcription factors by full-length PGC-1α proteins in transfection assays. In two established animal models of PD, the PPARGC1A expression profiles differed from the profile in human PD in that the levels of CNS- and reference gene transcripts were decreased in several brain regions. Furthermore, we identified haplotypes in the CNS-specific region of PPARGC1A that appeared protective for PD in a clinical cohort and a post-mortem sample (P = .0002). Thus, functional and genetic studies support a role of the CNS-specific PPARGC1A locus in PD. •CNS-PPARGC1A transcripts encoding full-length proteins were reduced in substantia nigra of Parkinson’s disease (PD) cases•CNS-PPARGC1A transcripts encoding 17 kDa isoforms were increased in the substantia nigra and globus pallidus of PD cases•The 17 kDa proteins inhibited the co-activation of HNF4α and PPARγ by full-length PGC-1α isoforms•CNS-PPARGC1A haplotypes protected against PD in two populations with comparable geographic and ethnic backgrounds
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0969-9961
1095-953X
DOI:10.1016/j.nbd.2018.09.016