Kinetics of cholesterol and phospholipid exchange between Mycoplasma gallisepticum cells and lipid vesicles. Alterations in membrane cholesterol and protein content

The kinetics of exchange of radiolabeled cholesterol and phospholipids between intact Mycoplasma gallisepticum cells and unilamellar lipid vesicles were investigated over a wide range of cholesterol/phospholipid molar ratio. The change in cholesterol/phospholipid molar ratio was achieved by adapting...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 259; no. 1; pp. 441 - 448
Main Authors Clejan, S, Bittman, R
Format Journal Article
LanguageEnglish
Published Bethesda, MD Elsevier Inc 10.01.1984
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The kinetics of exchange of radiolabeled cholesterol and phospholipids between intact Mycoplasma gallisepticum cells and unilamellar lipid vesicles were investigated over a wide range of cholesterol/phospholipid molar ratio. The change in cholesterol/phospholipid molar ratio was achieved by adapting the sterol-requiring M. gallisepticum to grow in cholesterol-poor media, providing cells with decreased unesterified cholesterol content. At least 90% of the cholesterol molecules in unsealed M. gallisepticum membranes underwent exchange at 37 degrees C as a single kinetic pool in the presence of albumin (2%, w/v). However, we observed biphasic exchange kinetics with intact cells, indicating that cholesterol translocation from the inner to outer monolayers was rate-limiting in the exchange process. Approximately 50% of the cholesterol molecules were localized in each kinetic pool, independent of the cholesterol/phospholipid molar ratio in the cells and vesicles. A striking change in the kinetic parameters for cholesterol exchange occurred between 20 and 26 mol % cholesterol; for example, when the cholesterol/phospholipid molar ratio was decreased from 0.36 to 0.25, the half-time for equilibration of the two cholesterol pools at 37 degrees C decreased from 4.6 +/- 0.5 to 2.5 +/- 0.1 h. Phospholipid exchange rates were also enhanced on decreasing the membrane cholesterol content. The ability of cholesterol to modulate its own exchange rate, as well as that of phospholipids, is suggested to arise from the sterol's ability to regulate membrane lipid order. Extensive chemical modification of the membrane surface by cross-linking of some of the protein constituents with 1,4-phenylenedimaleimide decreased the cholesterol exchange rate. Depletion of membrane proteins by treatment of growing cultures with chloramphenicol increased the cholesterol exchange rate, possibly because of removal of some of the protein mass that may impede lipid translocation. The observations that phospholipid exchange was one order of magnitude slower than cholesterol exchange and that dimethyl sulfoxide, potassium thiocyanate, and potassium salicylate enhanced the cholesterol exchange rate are consistent with a mechanism involving lipid exchange by diffusion through the aqueous phase.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(17)43680-5