Cross-View Retrieval via Probability-Based Semantics-Preserving Hashing

For efficiently retrieving nearest neighbors from large-scale multiview data, recently hashing methods are widely investigated, which can substantially improve query speeds. In this paper, we propose an effective probability-based semantics-preserving hashing (SePH) method to tackle the problem of c...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 47; no. 12; pp. 4342 - 4355
Main Authors Lin, Zijia, Ding, Guiguang, Han, Jungong, Wang, Jianmin
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:For efficiently retrieving nearest neighbors from large-scale multiview data, recently hashing methods are widely investigated, which can substantially improve query speeds. In this paper, we propose an effective probability-based semantics-preserving hashing (SePH) method to tackle the problem of cross-view retrieval. Considering the semantic consistency between views, SePH generates one unified hash code for all observed views of any instance. For training, SePH first transforms the given semantic affinities of training data into a probability distribution, and aims to approximate it with another one in Hamming space, via minimizing their Kullback-Leibler divergence. Specifically, the latter probability distribution is derived from all pair-wise Hamming distances between to-be-learnt hash codes of the training data. Then with learnt hash codes, any kind of predictive models like linear ridge regression, logistic regression, or kernel logistic regression, can be learnt as hash functions in each view for projecting the corresponding view-specific features into hash codes. As for out-of-sample extension, given any unseen instance, the learnt hash functions in its observed views can predict view-specific hash codes. Then by deriving or estimating the corresponding output probabilities with respect to the predicted view-specific hash codes, a novel probabilistic approach is further proposed to utilize them for determining a unified hash code. To evaluate the proposed SePH, we conduct extensive experiments on diverse benchmark datasets, and the experimental results demonstrate that SePH is reasonable and effective.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2168-2267
2168-2275
DOI:10.1109/TCYB.2016.2608906