Inheritance of Pantoea type III secretion systems through both vertical and horizontal transfer
The type III secretion system (T3SS) is an extracellular apparatus used by many Gram-negative bacteria to deliver effector proteins directly into plant and animal cells, thereby facilitating host-specific association. Strains of the enterobacterial genus, Pantoea, have been isolated from a wide vari...
Saved in:
Published in | Molecular genetics and genomics : MGG Vol. 290; no. 6; pp. 2075 - 2088 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2015
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The type III secretion system (T3SS) is an extracellular apparatus used by many Gram-negative bacteria to deliver effector proteins directly into plant and animal cells, thereby facilitating host-specific association. Strains of the enterobacterial genus, Pantoea, have been isolated from a wide variety of hosts, including plants, insects, and humans, yet it is unclear whether the T3SS may be involved in these associations. In this study, we use comparative genomics and phylogenetic methods to examine the origin and distribution of T3SSs in 35 sequenced environmental and clinical strains of Pantoea. We began our analysis by examining the distribution of the previously characterized plant cell-specific PSI-1 and animal cell-specific PSI-2 of the plant pathogenic Pantoea stewartii subsp. stewartii DC283 (PstDC283), and showed that both had a somewhat limited distribution. Our analysis, however, identified two variants of a unique plant cell-specific T3SS (PSI-1a and PSI-1b) in six Pantoea strains, including a clinical isolate. Our genome analysis of PstDC283 also identified a third T3SS that we named PSI-3, which has a similar genetic content and organization to the Salmonella, animal cell-specific SPI-2 system. Phylogenetic analysis of all three systems suggests that the PSI-1 system has been inherited vertically, whereas the newly identified PSI-1a and PSI-1b systems have been acquired independently from other genera within the Enterobacteriaceae. PSI-2 appears to have been acquired horizontally as far back as the Erwinia/Pantoea common ancestor, with evidence of more recent horizontal acquisition of the PSI-3 system. Our results suggest that Pantoea is a relatively old plant pathogen that has lost and subsequently regained different plant-associated T3SSs. This work has broad implications for understanding the host-associating capacity of Pantoea strains, and reveals the propensity for Pantoea isolates to exchange pathogenicity determinants with human-pathogenic members of the Enterobacteriaceae. |
---|---|
Bibliography: | http://dx.doi.org/10.1007/s00438-015-1062-2 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1617-4615 1617-4623 |
DOI: | 10.1007/s00438-015-1062-2 |