A Temporal Dependency Learning CNN With Attention Mechanism for MI-EEG Decoding

Deep learning methods have been widely explored in motor imagery (MI)-based brain computer interface (BCI) systems to decode electroencephalography (EEG) signals. However, most studies fail to fully explore temporal dependencies among MI-related patterns generated in different stages during MI tasks...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 31; pp. 3188 - 3200
Main Authors Ma, Xinzhi, Chen, Weihai, Pei, Zhongcai, Liu, Jingmeng, Huang, Bin, Chen, Jianer
Format Journal Article
LanguageEnglish
Published United States IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Deep learning methods have been widely explored in motor imagery (MI)-based brain computer interface (BCI) systems to decode electroencephalography (EEG) signals. However, most studies fail to fully explore temporal dependencies among MI-related patterns generated in different stages during MI tasks, resulting in limited MI-EEG decoding performance. Apart from feature extraction, learning temporal dependencies is equally important to develop a subject-specific MI-based BCI because every subject has their own way of performing MI tasks. In this paper, a novel temporal dependency learning convolutional neural network (CNN) with attention mechanism is proposed to address MI-EEG decoding. The network first learns spatial and spectral information from multi-view EEG data via the spatial convolution block. Then, a series of non-overlapped time windows is employed to segment the output data, and the discriminative feature is further extracted from each time window to capture MI-related patterns generated in different stages. Furthermore, to explore temporal dependencies among discriminative features in different time windows, we design a temporal attention module that assigns different weights to features in various time windows and fuses them into more discriminative features. The experimental results on the BCI Competition IV-2a (BCIC-IV-2a) and OpenBMI datasets show that our proposed network outperforms the state-of-the-art algorithms and achieves the average accuracy of 79.48%, improved by 2.30% on the BCIC-IV-2a dataset. We demonstrate that learning temporal dependencies effectively improves MI-EEG decoding performance. The code is available at https://github.com/Ma-Xinzhi/LightConvNet
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1534-4320
1558-0210
DOI:10.1109/TNSRE.2023.3299355