IFNet: An Interactive Frequency Convolutional Neural Network for Enhancing Motor Imagery Decoding From EEG

Objective: The key principle of motor imagery (MI) decoding for electroencephalogram (EEG)-based Brain-Computer Interface (BCI) is to extract task-discriminative features from spectral, spatial, and temporal domains jointly and efficiently, whereas limited, noisy, and non-stationary EEG samples chal...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 31; pp. 1900 - 1911
Main Authors Wang, Jiaheng, Yao, Lin, Wang, Yueming
Format Journal Article
LanguageEnglish
Published United States IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Objective: The key principle of motor imagery (MI) decoding for electroencephalogram (EEG)-based Brain-Computer Interface (BCI) is to extract task-discriminative features from spectral, spatial, and temporal domains jointly and efficiently, whereas limited, noisy, and non-stationary EEG samples challenge the advanced design of decoding algorithms. Methods: Inspired by the concept of cross-frequency coupling and its correlation with different behavioral tasks, this paper proposes a lightweight Interactive Frequency Convolutional Neural Network (IFNet) to explore cross-frequency interactions for enhancing representation of MI characteristics. IFNet first extracts spectro-spatial features in low and high-frequency bands, respectively. Then the interplay between the two bands is learned using an element-wise addition operation followed by temporal average pooling. Combined with repeated trial augmentation as a regularizer, IFNet yields spectro-spatio-temporally robust features for the final MI classification. We conduct extensive experiments on two benchmark datasets: the BCI competition IV 2a (BCIC-IV-2a) dataset and the OpenBMI dataset. Results: Compared with state-of-the-art MI decoding algorithms, IFNet achieves significantly superior classification performance on both datasets while improving the winner's result in BCIC-IV-2a by 11%. Moreover, by conducting sensitivity analysis on decision windows, we show IFNet attains the best trade-off between decoding speed and accuracy. Detailed analysis and visualization verify IFNet can capture the coupling across frequency bands along with the known MI signatures. Conclusion: We demonstrate the effectiveness and superiority of the proposed IFNet for MI decoding. Significance: This study suggests IFNet holds promise for rapid response and accurate control in MI-BCI applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1534-4320
1558-0210
1558-0210
DOI:10.1109/TNSRE.2023.3257319