Activation of SIRT1 promotes cartilage differentiation and reduces apoptosis of nucleus pulposus mesenchymal stem cells via the MCP1/CCR2 axis in subjects with intervertebral disc degeneration

Intervertebral disc degeneration (IDD) is a condition involving disruption of the bone tissue distribution. Nucleus pulposus mesenchymal stem cells (NPMSCs) and Sirtuin 1 (SIRT1) play important roles in bone diseases, therefore the aim of the present study was to evaluate the roles of SIRT1 and NPMS...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular medicine Vol. 46; no. 3; pp. 1074 - 1084
Main Authors Ou, Xuancheng, Ying, Jinwei, Bai, Xuedong, Wang, Chaofeng, Ruan, Dike
Format Journal Article
LanguageEnglish
Published Athens Spandidos Publications 01.09.2020
Spandidos Publications UK Ltd
D.A. Spandidos
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Intervertebral disc degeneration (IDD) is a condition involving disruption of the bone tissue distribution. Nucleus pulposus mesenchymal stem cells (NPMSCs) and Sirtuin 1 (SIRT1) play important roles in bone diseases, therefore the aim of the present study was to evaluate the roles of SIRT1 and NPMSCs in IDD. First, NPMSCs were harvested from patients with IDD. Then, the NPMSCs were treated with a SIRT activator, and monocyte chemoattractant protein 1 (MCP1) and chemokine receptor 2 (CCR2) inhibitors. Indices related to NPMSC growth, proliferation, differentiation and apoptosis were measured. Subsequently, IDD rat models were established and were transfected with NPMSCs overexpressing SIRT1. NPMSC apoptosis and cartilage differentiation were detected in the rat IDD model. SIRT1 expression was found to be decreased, and the expression of MCP1 and CCR2 increased in NPMSCs of patients with IDD. The upregulation of SIRT1 and the downregulation of the MCP1/CCR2 axis promoted cartilage differentiation and reduced the number of apoptotic NPMSCs. Furthermore, MCP1 reversed the progression of the cartilage differentiation of NPMSCs and the inhibition of NPMSC apoptosis induced by SIRT1 overexpression. Moreover, the transplantation of rat NPMSCs overexpressing SIRT1 relieved IDD in rats. Therefore, SIRT1 overexpression improved cartilage differentiation and reduced the apoptosis of NPMSCs by inactivating the MCP1/CCR2 axis, thus attenuating IDD in rats.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1107-3756
1791-244X
DOI:10.3892/ijmm.2020.4668