Nucleosome Positioning by Human Alu Elements in Chromatin

Alu sequences are interspersed throughout the genomes of primate cells, occurring singly and in clusters around RNA polymerase II-transcribed genes. Because these repeat elements are capable of positioning nucleosomes in in vitro reconstitutes (Englander, E. W., Wolffe, A. P., and Howard, B. H. (199...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 270; no. 17; pp. 10091 - 10096
Main Authors Englander, E W, Howard, B H
Format Journal Article
LanguageEnglish
Published United States American Society for Biochemistry and Molecular Biology 28.04.1995
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Alu sequences are interspersed throughout the genomes of primate cells, occurring singly and in clusters around RNA polymerase II-transcribed genes. Because these repeat elements are capable of positioning nucleosomes in in vitro reconstitutes (Englander, E. W., Wolffe, A. P., and Howard, B. H. (1993) J. Biol. Chem. 268, 19565-19573), we investigated whether they also [Abstract] influence in vivo chromatin structure. When assayed collectively using consensus sequence probes and native chromatin as template, Alu family members were found to confer rotational positioning on nucleosomes or nucleosome-like particles. In particular, a 10-base pair pattern of DNase I nicking that spanned the RNA polymerase III box A promoter motif extended upstream to cover diverse 5′-flanking sequences, suggesting that Alu repeats may influence patterns of nucleosome formation over neighboring regions. Computational analysis of a set of naturally occurring Alu sequences indicated that nucleosome positioning information is intrinsic to these elements. Inasmuch as local chromatin organization influences gene expression, the capacity of Alu sequences to affect chromatin structure as demonstrated here may help to clarify some features of these elements.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.270.17.10091