Generation of a B2M homozygous knockout human somatic cell nuclear transfer-derived embryonic stem cell line using the CRISPR/Cas9 system
Beta2-microglobulin (B2M) is a subunit of human leukocyte antigen class-I (HLA-I) heterodimer that mediates immune rejection through activation of cytotoxic T cells. B2M binding to HLA-I proteins is essential for functional HLA-I on the cell surface. Here, we generated a B2M homozygous knockout soma...
Saved in:
Published in | Stem cell research Vol. 59; p. 102643 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier B.V
01.03.2022
Elsevier |
Online Access | Get full text |
Cover
Loading…
Summary: | Beta2-microglobulin (B2M) is a subunit of human leukocyte antigen class-I (HLA-I) heterodimer that mediates immune rejection through activation of cytotoxic T cells. B2M binding to HLA-I proteins is essential for functional HLA-I on the cell surface. Here, we generated a B2M homozygous knockout somatic cell nuclear transfer-induced embryonic stem cell (SCNT-ESC) line using CRISPR/Cas9-mediated gene targeting. B2M KO cell line, which does not express HLA-I molecules on cell surface, has pluripotency and differentiation ability to three germ layers. This cell line provides a useful cell source for investigating immunogenicity of allogeneic ESCs and their derivatives for tissue regeneration. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1873-5061 1876-7753 |
DOI: | 10.1016/j.scr.2021.102643 |