Atypical ethanol production by carbon catabolite derepressed lactobacilli

Cost effective use of lignocellulosic biomass for bio-based chemical production requires the discovery of novel strains and processes. Lactobacillus pentosus JH5XP5 is a carbon catabolite repression negative mutant which utilizes glucose and pentoses derived from lignocellulosic biomass in the media...

Full description

Saved in:
Bibliographic Details
Published inBioresource technology Vol. 101; no. 22; pp. 8790 - 8797
Main Authors Kim, Jae-Han, Block, David E., Shoemaker, Sharon P., Mills, David A.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.11.2010
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Cost effective use of lignocellulosic biomass for bio-based chemical production requires the discovery of novel strains and processes. Lactobacillus pentosus JH5XP5 is a carbon catabolite repression negative mutant which utilizes glucose and pentoses derived from lignocellulosic biomass in the media simultaneously. With a broad range of carbon substrates, L. pentosus JH5XP5 produced a significant amount of ethanol without acetate formation. The yields of ethanol were 2.0- to 2.5-fold higher than those of lactate when glucose, galactose or maltose was used either as a single carbon source or simultaneously with glucose. L. pentosus JH5XP5 was successfully used in an integrated process of simultaneous saccharification and mixed sugar fermentation of rice straw hydrolysate. During the fermentation, the enzyme activities for the saccharification of cellulose were not diminished. Moreover glucose, xylose, and arabinose sugars derived from rice straw hyrolysate were consumed concurrently as if a single carbon source existed and no sugars or cellulosic fiber remained after the fermentation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0960-8524
1873-2976
DOI:10.1016/j.biortech.2010.06.087