Genetic Transformation of the Filamentous Fungus Pseudogymnoascus verrucosus of Antarctic Origin

Cold-adapted fungi isolated from Antarctica, in particular those belonging to the genus , are producers of secondary metabolites with interesting bioactive properties as well as enzymes with potential biotechnological applications. However, at genetic level, the study of these fungi has been hindere...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in microbiology Vol. 10; p. 2675
Main Authors Díaz, Anaí, Villanueva, Pablo, Oliva, Vicente, Gil-Durán, Carlos, Fierro, Francisco, Chávez, Renato, Vaca, Inmaculada
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 22.11.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cold-adapted fungi isolated from Antarctica, in particular those belonging to the genus , are producers of secondary metabolites with interesting bioactive properties as well as enzymes with potential biotechnological applications. However, at genetic level, the study of these fungi has been hindered by the lack of suitable genetic tools such as transformation systems. In fungi, the availability of transformation systems is a key to address the functional analysis of genes related with the production of a particular metabolite or enzyme. To the best of our knowledge, the transformation of strains of Antarctic origin has not been achieved yet. In this work, we describe for the first time the successful transformation of a strain of Antarctic origin, using two methodologies: the polyethylene glycol (PEG)-mediated transformation, and the electroporation of germinated conidia. We achieved transformation efficiencies of 15.87 ± 5.16 transformants per μg of DNA and 2.67 ± 1.15 transformants per μg of DNA for PEG-mediated transformation and electroporation of germinated conidia, respectively. These results indicate that PEG-mediated transformation is a very efficient method for the transformation of this Antarctic fungus. The genetic transformation of described in this work represents the first example of transformation of a filamentous fungus of Antarctic origin.
AbstractList Cold-adapted fungi isolated from Antarctica, in particular those belonging to the genus , are producers of secondary metabolites with interesting bioactive properties as well as enzymes with potential biotechnological applications. However, at genetic level, the study of these fungi has been hindered by the lack of suitable genetic tools such as transformation systems. In fungi, the availability of transformation systems is a key to address the functional analysis of genes related with the production of a particular metabolite or enzyme. To the best of our knowledge, the transformation of strains of Antarctic origin has not been achieved yet. In this work, we describe for the first time the successful transformation of a strain of Antarctic origin, using two methodologies: the polyethylene glycol (PEG)-mediated transformation, and the electroporation of germinated conidia. We achieved transformation efficiencies of 15.87 ± 5.16 transformants per μg of DNA and 2.67 ± 1.15 transformants per μg of DNA for PEG-mediated transformation and electroporation of germinated conidia, respectively. These results indicate that PEG-mediated transformation is a very efficient method for the transformation of this Antarctic fungus. The genetic transformation of described in this work represents the first example of transformation of a filamentous fungus of Antarctic origin.
Cold-adapted fungi isolated from Antarctica, in particular those belonging to the genus Pseudogymnoascus, are producers of secondary metabolites with interesting bioactive properties as well as enzymes with potential biotechnological applications. However, at genetic level, the study of these fungi has been hindered by the lack of suitable genetic tools such as transformation systems. In fungi, the availability of transformation systems is a key to address the functional analysis of genes related with the production of a particular metabolite or enzyme. To the best of our knowledge, the transformation of Pseudogymnoascus strains of Antarctic origin has not been achieved yet. In this work, we describe for the first time the successful transformation of a Pseudogymnoascus verrucosus strain of Antarctic origin, using two methodologies: the polyethylene glycol (PEG)-mediated transformation, and the electroporation of germinated conidia. We achieved transformation efficiencies of 15.87 ± 5.16 transformants per μg of DNA and 2.67 ± 1.15 transformants per μg of DNA for PEG-mediated transformation and electroporation of germinated conidia, respectively. These results indicate that PEG-mediated transformation is a very efficient method for the transformation of this Antarctic fungus. The genetic transformation of Pseudogymnoascus verrucosus described in this work represents the first example of transformation of a filamentous fungus of Antarctic origin.
Cold-adapted fungi isolated from Antarctica, in particular those belonging to the genus Pseudogymnoascus, are producers of secondary metabolites with interesting bioactive properties as well as enzymes with potential biotechnological applications. However, at genetic level, the study of these fungi has been hindered by the lack of suitable genetic tools such as transformation systems. In fungi, the availability of transformation systems is a key to address the functional analysis of genes related with the production of a particular metabolite or enzyme. To the best of our knowledge, the transformation of Pseudogymnoascus strains of Antarctic origin has not been achieved yet. In this work, we describe for the first time the successful transformation of a Pseudogymnoascus verrucosus strain of Antarctic origin, using two methodologies: the polyethylene glycol (PEG)-mediated transformation, and the electroporation of germinated conidia. We achieved transformation efficiencies of 15.87 ± 5.16 transformants per μg of DNA and 2.67 ± 1.15 transformants per μg of DNA for PEG-mediated transformation and electroporation of germinated conidia, respectively. These results indicate that PEG-mediated transformation is a very efficient method for the transformation of this Antarctic fungus. The genetic transformation of Pseudogymnoascus verrucosus described in this work represents the first example of transformation of a filamentous fungus of Antarctic origin.Cold-adapted fungi isolated from Antarctica, in particular those belonging to the genus Pseudogymnoascus, are producers of secondary metabolites with interesting bioactive properties as well as enzymes with potential biotechnological applications. However, at genetic level, the study of these fungi has been hindered by the lack of suitable genetic tools such as transformation systems. In fungi, the availability of transformation systems is a key to address the functional analysis of genes related with the production of a particular metabolite or enzyme. To the best of our knowledge, the transformation of Pseudogymnoascus strains of Antarctic origin has not been achieved yet. In this work, we describe for the first time the successful transformation of a Pseudogymnoascus verrucosus strain of Antarctic origin, using two methodologies: the polyethylene glycol (PEG)-mediated transformation, and the electroporation of germinated conidia. We achieved transformation efficiencies of 15.87 ± 5.16 transformants per μg of DNA and 2.67 ± 1.15 transformants per μg of DNA for PEG-mediated transformation and electroporation of germinated conidia, respectively. These results indicate that PEG-mediated transformation is a very efficient method for the transformation of this Antarctic fungus. The genetic transformation of Pseudogymnoascus verrucosus described in this work represents the first example of transformation of a filamentous fungus of Antarctic origin.
Cold-adapted fungi isolated from Antarctica, in particular those belonging to the genus Pseudogymnoascus , are producers of secondary metabolites with interesting bioactive properties as well as enzymes with potential biotechnological applications. However, at genetic level, the study of these fungi has been hindered by the lack of suitable genetic tools such as transformation systems. In fungi, the availability of transformation systems is a key to address the functional analysis of genes related with the production of a particular metabolite or enzyme. To the best of our knowledge, the transformation of Pseudogymnoascus strains of Antarctic origin has not been achieved yet. In this work, we describe for the first time the successful transformation of a Pseudogymnoascus verrucosus strain of Antarctic origin, using two methodologies: the polyethylene glycol (PEG)-mediated transformation, and the electroporation of germinated conidia. We achieved transformation efficiencies of 15.87 ± 5.16 transformants per μg of DNA and 2.67 ± 1.15 transformants per μg of DNA for PEG-mediated transformation and electroporation of germinated conidia, respectively. These results indicate that PEG-mediated transformation is a very efficient method for the transformation of this Antarctic fungus. The genetic transformation of Pseudogymnoascus verrucosus described in this work represents the first example of transformation of a filamentous fungus of Antarctic origin.
Author Chávez, Renato
Díaz, Anaí
Fierro, Francisco
Villanueva, Pablo
Oliva, Vicente
Gil-Durán, Carlos
Vaca, Inmaculada
AuthorAffiliation 1 Departamento de Química, Facultad de Ciencias, Universidad de Chile , Santiago , Chile
2 Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile , Santiago , Chile
3 Departamento de Biotecnología, Universidad Autónoma Metropolitana, Unidad Iztapalapa , Mexico City , Mexico
AuthorAffiliation_xml – name: 3 Departamento de Biotecnología, Universidad Autónoma Metropolitana, Unidad Iztapalapa , Mexico City , Mexico
– name: 1 Departamento de Química, Facultad de Ciencias, Universidad de Chile , Santiago , Chile
– name: 2 Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile , Santiago , Chile
Author_xml – sequence: 1
  givenname: Anaí
  surname: Díaz
  fullname: Díaz, Anaí
– sequence: 2
  givenname: Pablo
  surname: Villanueva
  fullname: Villanueva, Pablo
– sequence: 3
  givenname: Vicente
  surname: Oliva
  fullname: Oliva, Vicente
– sequence: 4
  givenname: Carlos
  surname: Gil-Durán
  fullname: Gil-Durán, Carlos
– sequence: 5
  givenname: Francisco
  surname: Fierro
  fullname: Fierro, Francisco
– sequence: 6
  givenname: Renato
  surname: Chávez
  fullname: Chávez, Renato
– sequence: 7
  givenname: Inmaculada
  surname: Vaca
  fullname: Vaca, Inmaculada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31824460$$D View this record in MEDLINE/PubMed
BookMark eNp1UsFu3CAQRVWqJk1z76nysZfdwoAxvlSKom4aKVJ62ENvFOPBIbIhBTtS_r7sbhollcqBGQ3z3sww7z05CjEgIR8ZXXOu2i9u8rZbA2XtmoJs6jfkhEkpVpzCz6MX_jE5y_mOliMolPsdOeZMgRCSnpBflxhw9rbaJhOyi2kys4-hiq6ab7Ha-NFMGOa45GqzhKGYHxmXPg6PU4gm2xJ4wJQWG3NxC-o8zCbZHeNN8oMPH8hbZ8aMZ0_2lGw337YX31fXN5dXF-fXKyskzCtwXDglDCiwDULTUcm5EaCYc67m2FLoDLcguTI19mX-TkDTs46qjjHHT8nVgbaP5k7fJz-Z9Kij8XofiGnQJpWuRtTUSLBMCN5aJbjsDfYOsJeAtHO8sYXr64Hrfukm7G2ZP5nxFenrl-Bv9RAftFSKQ90Ugs9PBCn-XjDPevLZ4jiagOUnNXAQLVBei5L66WWt5yJ_N1QS6CHBpphzQvecwqje6UDvdaB3OtB7HRSI_Adi_bxfa-nWj_8H_gHY17qg
CitedBy_id crossref_primary_10_1007_s12223_022_00950_z
crossref_primary_10_1007_s42770_022_00834_x
crossref_primary_10_3390_plants13131754
crossref_primary_10_3390_molecules25245805
crossref_primary_10_1007_s13205_021_02963_w
crossref_primary_10_1093_jimb_kuab073
crossref_primary_10_1007_s00294_021_01218_8
crossref_primary_10_1016_j_pmpp_2025_102677
crossref_primary_10_1007_s42161_023_01534_7
crossref_primary_10_3389_fmicb_2024_1333793
crossref_primary_10_1002_bab_2077
crossref_primary_10_1007_s12223_021_00852_6
crossref_primary_10_1111_ppa_14047
crossref_primary_10_3389_fbioe_2020_00232
crossref_primary_10_1186_s43141_021_00255_7
crossref_primary_10_3390_jof10020157
crossref_primary_10_1111_raq_12683
crossref_primary_10_3390_jof9080834
crossref_primary_10_3389_fmicb_2022_972425
crossref_primary_10_1093_jxb_erab338
crossref_primary_10_1111_jph_13255
Cites_doi 10.1186/s12866-014-0338-8
10.1017/S0953756296003425
10.1007/s11274-012-1032-3
10.1007/978-3-030-18367-7_12
10.1186/s40659-018-0177-4
10.4161/bbug.1.6.13257
10.1007/978-1-4614-2356-0_35
10.3390/molecules23061253
10.1201/9780203027356.ch9
10.1080/07388551.2017.1379468
10.1186/s12896-016-0287-4
10.1002/0471142727.mb1307s27
10.1016/j.plrev.2014.01.007
10.1007/978-3-030-02786-5_11
10.1111/lam.12890
10.2478/s11658-009-0028-y
10.1007/s00300-015-1672-5
10.1139/m91-147
10.1016/j.mimet.2014.05.016
10.1371/journal.pone.0159434
10.1111/j.1574-6968.1998.tb13316.x
10.1007/s00248-014-0374-9
10.1007/978-3-319-10142-2_2
10.1016/j.fgb.2015.05.009
10.1038/nbt0390-223
10.3103/S009545271802007X
10.1385/1-59259-774-2:297
10.1007/978-1-61779-501-5_21
10.1016/j.funeco.2012.01.007
10.1007/978-3-211-99691-1_5
10.1016/0378-1119(87)90164-8
10.1111/lam.12875
10.1007/s00232-017-9998-2
10.1007/978-3-030-18367-7_1
10.1590/S1516-89132008000100004
10.1007/s12223-018-0625-0
10.1186/s40694-019-0070-0
10.1007/s00792-019-01086-8
10.1016/j.mimet.2009.01.025
10.1021/np500906k
10.1038/sj.jim.7000248
10.1186/s12934-017-0785-7
10.1007/s00300-009-0740-0
10.1128/MR.53.1.148-170.1989
10.1007/s00300-018-2387-1
10.1007/s00792-018-1003-1
10.1007/s11274-013-1418-x
10.1111/j.1365-2958.1990.tb00654.x
10.1007/s11046-018-0285-2
10.1046/j.1365-2672.2002.01516.x
10.1128/AEM.00510-16
10.3390/md15030028
10.1007/s00300-018-2398-y
ContentType Journal Article
Copyright Copyright © 2019 Díaz, Villanueva, Oliva, Gil-Durán, Fierro, Chávez and Vaca.
Copyright © 2019 Díaz, Villanueva, Oliva, Gil-Durán, Fierro, Chávez and Vaca. 2019 Díaz, Villanueva, Oliva, Gil-Durán, Fierro, Chávez and Vaca
Copyright_xml – notice: Copyright © 2019 Díaz, Villanueva, Oliva, Gil-Durán, Fierro, Chávez and Vaca.
– notice: Copyright © 2019 Díaz, Villanueva, Oliva, Gil-Durán, Fierro, Chávez and Vaca. 2019 Díaz, Villanueva, Oliva, Gil-Durán, Fierro, Chávez and Vaca
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fmicb.2019.02675
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-302X
ExternalDocumentID oai_doaj_org_article_0a62c14439c8436daedf2ed62e0bf37c
PMC6883257
31824460
10_3389_fmicb_2019_02675
Genre Journal Article
GrantInformation_xml – fundername: Fondecyt
  grantid: 1150894
– fundername: DICYT-USACH
– fundername: CONICYT-PFCHA/Doctorado Nacional
  grantid: 2018-21181056; 2014-63140056
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
O5R
O5S
OK1
PGMZT
RNS
RPM
IAO
IEA
IHR
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c462t-2f34f84a282c7e27b0633a4281fff53e902ba3c2638a5ed389b427d1b08b11f3
IEDL.DBID M48
ISSN 1664-302X
IngestDate Wed Aug 27 01:32:20 EDT 2025
Thu Aug 21 18:11:31 EDT 2025
Fri Jul 11 03:05:04 EDT 2025
Thu Jan 02 22:59:28 EST 2025
Thu Apr 24 23:02:43 EDT 2025
Tue Jul 01 01:52:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Antarctica
electroporation
protoplasts
transformation
Pseudogymnoascus
Language English
License Copyright © 2019 Díaz, Villanueva, Oliva, Gil-Durán, Fierro, Chávez and Vaca.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-2f34f84a282c7e27b0633a4281fff53e902ba3c2638a5ed389b427d1b08b11f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors have contributed equally to this work
This article was submitted to Fungi and Their Interactions, a section of the journal Frontiers in Microbiology
Edited by: Stefanie Pöggeler, University of Göttingen, Germany
Reviewed by: Skander Elleuche, Miltenyi Biotec, Germany; Daniela Nordzieke, University of Göttingen, Germany
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fmicb.2019.02675
PMID 31824460
PQID 2324920354
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_0a62c14439c8436daedf2ed62e0bf37c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6883257
proquest_miscellaneous_2324920354
pubmed_primary_31824460
crossref_primary_10_3389_fmicb_2019_02675
crossref_citationtrail_10_3389_fmicb_2019_02675
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-22
PublicationDateYYYYMMDD 2019-11-22
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-22
  day: 22
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in microbiology
PublicationTitleAlternate Front Microbiol
PublicationYear 2019
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Duarte (ref10) 2017; 38
Poveda (ref33) 2018; 51
Liu (ref23) 2012; 835
Kochkina (ref21) 2019; 42
Meilhoc (ref28) 1990; 8
Li (ref22) 2017; 16
Zhang (ref53) 2018; 183
Alves (ref1) 2019; 23
Sánchez (ref43) 1996; 43
Sautour (ref44) 2002; 28
Gonçalves (ref16) 2015; 38
Ogaki (ref30) 2019
Loperena (ref24) 2012; 28
Mach (ref27) 2003
Cho (ref5) 2013
Tian (ref46) 2017; 15
Punt (ref35) 1987; 56
Cruz-Ramón (ref6) 2019; 64
Duarte (ref9) 2018; 41
Dermol (ref8) 2016; 11
Becker (ref2) 2001; 27
Vieira (ref49) 2018; 67
Furbino (ref13) 2014; 67
Jakobsson (ref19) 2017; 250
Purić (ref36) 2018; 66
Navarrete (ref29) 2009; 14
Vela-Corcía (ref48) 2015; 15
Loque (ref26) 2010; 33
Zhang (ref54) 2015; 81
Wiebe (ref51) 1997; 101
Rodríguez-Iglesias (ref39) 2015
Bridge (ref3) 2012; 5
Rosa (ref40) 2019
Gangavaram (ref14) 2009; 77
Gomes (ref15) 2018; 22
Roth (ref41) 2019; 6
Rivera (ref38) 2014; 11
Chakraborty (ref4) 1991; 37
Rehman (ref37) 2016; 16
Poyedinok (ref34) 2018; 52
Kawai (ref20) 2010; 1
Olmedo-Monfil (ref31) 2004; 267
Pearce (ref32) 2012
Henríquez (ref17) 2014; 30
Lopes (ref25) 2008; 51
Wang (ref50) 2018; 23
Xu (ref52) 2014; 103
Vaca (ref47) 2019
Figueroa (ref11) 2015; 78
Fincham (ref12) 1989; 53
Dantas-Barbosa (ref7) 1998; 169
Herrera-Estrella (ref18) 1990; 4
Ruiz-Díez (ref42) 2002; 92
Segers (ref45) 2016; 82
References_xml – volume: 15
  start-page: 20
  year: 2015
  ident: ref48
  article-title: Transient transformation of Podosphaera xanthii by electroporation of conidia
  publication-title: BMC Microbiol.
  doi: 10.1186/s12866-014-0338-8
– volume: 101
  start-page: 871
  year: 1997
  ident: ref51
  article-title: Protoplast production and transformation of morphological mutants of the Quorn® myco-protein fungus, Fusarium graminearum A3/5, using the hygromycin B resistance plasmid pAN7-1
  publication-title: Mycol. Res.
  doi: 10.1017/S0953756296003425
– volume: 28
  start-page: 2249
  year: 2012
  ident: ref24
  article-title: Extracellular enzymes produced by microorganisms isolated from maritime Antarctica
  publication-title: World J. Microbiol. Biotechnol.
  doi: 10.1007/s11274-012-1032-3
– start-page: 265
  volume-title: Fungi of Antarctica
  year: 2019
  ident: ref47
  article-title: Bioactive compounds produced by Antarctic filamentous fungi
  doi: 10.1007/978-3-030-18367-7_12
– volume: 51
  start-page: 28
  year: 2018
  ident: ref33
  article-title: Cold-active pectinolytic activity produced by filamentous fungi associated with Antarctic marine sponges
  publication-title: Biol. Res.
  doi: 10.1186/s40659-018-0177-4
– volume: 43
  start-page: 48
  year: 1996
  ident: ref43
  article-title: Efficient transformation of Aspergillus nidulans by electroporation of germinated conidia
  publication-title: Fungal Genet. Newsl.
– volume: 1
  start-page: 395
  year: 2010
  ident: ref20
  article-title: Transformation of Saccharomyces cerevisiae and other fungi: methods and possible underlying mechanism
  publication-title: Bioeng. Bugs.
  doi: 10.4161/bbug.1.6.13257
– start-page: 395
  volume-title: Laboratory protocols in fungal biology: Current methods in fungal biology
  year: 2013
  ident: ref5
  article-title: Improved transformation method for Alternaria brassicicola and its applications
  doi: 10.1007/978-1-4614-2356-0_35
– volume: 23
  start-page: 1253
  year: 2018
  ident: ref50
  article-title: Optimization of production conditions for protoplasts and polyethylene glycol-mediated transformation of Gaeumannomyces tritici
  publication-title: Molecules
  doi: 10.3390/molecules23061253
– start-page: 109
  volume-title: Handbook of fungal biotechnology. 2nd Edn
  year: 2003
  ident: ref27
  article-title: Transformation and gene manipulation in filamentous fungi: an overview
  doi: 10.1201/9780203027356.ch9
– volume: 38
  start-page: 600
  year: 2017
  ident: ref10
  article-title: Cold-adapted enzymes produced by fungi from terrestrial and marine Antarctic environments
  publication-title: Crit. Rev. Biotechnol.
  doi: 10.1080/07388551.2017.1379468
– volume: 16
  start-page: 57
  year: 2016
  ident: ref37
  article-title: Protoplast transformation as a potential platform for exploring gene function in Verticillium dahlia
  publication-title: BMC Biotechnol.
  doi: 10.1186/s12896-016-0287-4
– volume: 27
  start-page: 13.7.1
  year: 2001
  ident: ref2
  article-title: Introduction of DNA into yeast cells
  publication-title: Curr. Protoc. Mol. Biol.
  doi: 10.1002/0471142727.mb1307s27
– volume: 11
  start-page: 184
  year: 2014
  ident: ref38
  article-title: Physical methods for genetic transformation of fungi and yeast
  publication-title: Phys Life Rev
  doi: 10.1016/j.plrev.2014.01.007
– start-page: 239
  volume-title: The ecological role of micro-organisms in the Antarctic environment
  year: 2019
  ident: ref30
  article-title: Marine fungi associated with Antarctic macroalgae
  doi: 10.1007/978-3-030-02786-5_11
– volume: 67
  start-page: 64
  year: 2018
  ident: ref49
  article-title: Terrestrial and marine Antarctic fungi extracts active against Xanthomonas citri subsp. Citri
  publication-title: Lett. Appl. Microbiol.
  doi: 10.1111/lam.12890
– volume: 14
  start-page: 692
  year: 2009
  ident: ref29
  article-title: Molecular characterization of the niaD and pyrG genes from Penicillium camemberti, and their use as transformation markers
  publication-title: Cell. Mol. Biol. Lett.
  doi: 10.2478/s11658-009-0028-y
– volume: 38
  start-page: 1143
  year: 2015
  ident: ref16
  article-title: Antibacterial, antifungal and antiprotozoal activities of fungal communities present in different substrates from Antarctica
  publication-title: Polar Biol.
  doi: 10.1007/s00300-015-1672-5
– volume: 37
  start-page: 858
  year: 1991
  ident: ref4
  article-title: An electroporation-based system for high-efficiency transformation of germinated conidia of filamentous fungi
  publication-title: Can. J. Microbiol.
  doi: 10.1139/m91-147
– volume: 103
  start-page: 58
  year: 2014
  ident: ref52
  article-title: Efficient transformation of Rhizopus delemar by electroporation of germinated spores
  publication-title: J. Microbiol. Methods
  doi: 10.1016/j.mimet.2014.05.016
– volume: 11
  start-page: e0159434
  year: 2016
  ident: ref8
  article-title: Cell electrosensitization exists only in certain electroporation buffers
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0159434
– volume: 169
  start-page: 185
  year: 1998
  ident: ref7
  article-title: Genetic transformation of germinated conidia of the thermophilic fungus Humicola grisea var. thermoidea to hygromycin B resistance
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/j.1574-6968.1998.tb13316.x
– volume: 67
  start-page: 775
  year: 2014
  ident: ref13
  article-title: Diversity patterns, ecology and biological activities of fungal communities associated with the endemic macroalgae across the Antarctic peninsula
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-014-0374-9
– start-page: 21
  volume-title: Genetic transformation systems in fungi
  year: 2015
  ident: ref39
  article-title: Transformation for genome manipulation in fungi
  doi: 10.1007/978-3-319-10142-2_2
– volume: 81
  start-page: 73
  year: 2015
  ident: ref54
  article-title: Development of an Agrobacterium-mediated transformation system for the cold-adapted fungi Pseudogymnoascus destructans and P. pannorum
  publication-title: Fungal Genet. Biol.
  doi: 10.1016/j.fgb.2015.05.009
– volume: 8
  start-page: 223
  year: 1990
  ident: ref28
  article-title: High efficiency transformation of intact yeast cells by electric field pulses
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt0390-223
– volume: 52
  start-page: 139
  year: 2018
  ident: ref34
  article-title: Advances, problems, and prospects of genetic transformation of fungi
  publication-title: Cytol. Genet.
  doi: 10.3103/S009545271802007X
– volume: 267
  start-page: 297
  year: 2004
  ident: ref31
  article-title: Three decades of fungal transformation: key concepts and applications
  publication-title: Methods Mol. Biol.
  doi: 10.1385/1-59259-774-2:297
– volume: 835
  start-page: 365
  year: 2012
  ident: ref23
  article-title: Polyethylene glycol (PEG)-mediated transformation in filamentous fungal pathogens
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-61779-501-5_21
– volume: 5
  start-page: 381
  year: 2012
  ident: ref3
  article-title: Non-lichenized Antarctic fungi: transient visitors or members of a cryptic ecosystem?
  publication-title: Fungal Ecol.
  doi: 10.1016/j.funeco.2012.01.007
– start-page: 99
  volume-title: Adaption of microbial life to environmental extremes
  year: 2012
  ident: ref32
  article-title: Extremophiles in Antarctica: life at low temperatures
  doi: 10.1007/978-3-211-99691-1_5
– volume: 56
  start-page: 117
  year: 1987
  ident: ref35
  article-title: Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli
  publication-title: Gene
  doi: 10.1016/0378-1119(87)90164-8
– volume: 66
  start-page: 530
  year: 2018
  ident: ref36
  article-title: Activity of Antarctic fungi extracts against phytopathogenic bacteria
  publication-title: Lett. Appl. Microbiol.
  doi: 10.1111/lam.12875
– volume: 250
  start-page: 587
  year: 2017
  ident: ref19
  article-title: Towards a unified understanding of lithium action in basic biology and its significance for applied biology
  publication-title: J. Membr. Biol.
  doi: 10.1007/s00232-017-9998-2
– start-page: 1
  volume-title: Fungi of Antarctica
  year: 2019
  ident: ref40
  article-title: Fungi in Antarctica: diversity, ecology, effects of climate change, and bioprospection for bioactive compounds
  doi: 10.1007/978-3-030-18367-7_1
– volume: 51
  start-page: 27
  year: 2008
  ident: ref25
  article-title: Restriction enzyme improves the efficiency of genetic transformations in Moniliophthora perniciosa, the causal agent of witches’ broom disease in Theobroma cacao
  publication-title: Braz. Arch. Biol. Technol.
  doi: 10.1590/S1516-89132008000100004
– volume: 64
  start-page: 33
  year: 2019
  ident: ref6
  article-title: Electroporation of germinated conidia and young mycelium as an efficient transformation system for Acremonium chrysogenum
  publication-title: Folia Microbiol.
  doi: 10.1007/s12223-018-0625-0
– volume: 6
  start-page: 7
  year: 2019
  ident: ref41
  article-title: A protoplast generation and transformation method for soybean sudden death syndrome causal agents Fusarium virguliforme and F. brasiliense
  publication-title: Fungal Biol. Biotechnol.
  doi: 10.1186/s40694-019-0070-0
– volume: 23
  start-page: 327
  year: 2019
  ident: ref1
  article-title: Diversity, distribution, and pathogenic potential of cultivable fungi present in rocks of south Shetlands archipelago, maritime Antarctica
  publication-title: Fungal Biol.
  doi: 10.1007/s00792-019-01086-8
– volume: 77
  start-page: 159
  year: 2009
  ident: ref14
  article-title: Improved electroporation-mediated non-integrative transformation of Thermomyces lanuginosus
  publication-title: J. Microbiol. Methods
  doi: 10.1016/j.mimet.2009.01.025
– volume: 78
  start-page: 919
  year: 2015
  ident: ref11
  article-title: 3-Nitroasterric acid derivatives from an Antarctic sponge-derived Pseudogymnoascus sp. fungus
  publication-title: J. Nat. Prod.
  doi: 10.1021/np500906k
– volume: 28
  start-page: 311
  year: 2002
  ident: ref44
  article-title: Comparison of the effects of temperature and water activity on growth rate of food spoilage moulds
  publication-title: J. Ind. Microbiol. Biotechnol.
  doi: 10.1038/sj.jim.7000248
– volume: 16
  start-page: 168
  year: 2017
  ident: ref22
  article-title: Methods for genetic transformation of filamentous fungi
  publication-title: Microb. Cell Factories
  doi: 10.1186/s12934-017-0785-7
– volume: 33
  start-page: 641
  year: 2010
  ident: ref26
  article-title: Fungal community associated with marine macroalgae from Antarctica
  publication-title: Polar Biol.
  doi: 10.1007/s00300-009-0740-0
– volume: 53
  start-page: 148
  year: 1989
  ident: ref12
  article-title: Transformation in fungi
  publication-title: Microbiol. Rev.
  doi: 10.1128/MR.53.1.148-170.1989
– volume: 41
  start-page: 2511
  year: 2018
  ident: ref9
  article-title: Production of cold-adapted enzymes by filamentous fungi from King George Island, Antarctica
  publication-title: Polar Biol.
  doi: 10.1007/s00300-018-2387-1
– volume: 22
  start-page: 381
  year: 2018
  ident: ref15
  article-title: Cultivable fungi present in Antarctic soils: taxonomy, phylogeny, diversity, and bioprospecting of antiparasitic and herbicidal metabolites
  publication-title: Extremophiles
  doi: 10.1007/s00792-018-1003-1
– volume: 30
  start-page: 65
  year: 2014
  ident: ref17
  article-title: Diversity of cultivable fungi associated with Antarctic marine sponges and screening for their antimicrobial, antitumoral and antioxidant potential
  publication-title: World J. Microbiol. Biotechnol.
  doi: 10.1007/s11274-013-1418-x
– volume: 4
  start-page: 839
  year: 1990
  ident: ref18
  article-title: High-efficiency transformation system for the biocontrol agents, Trichoderma spp
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.1990.tb00654.x
– volume: 183
  start-page: 805
  year: 2018
  ident: ref53
  article-title: Green fluorescent protein expression in Pseudogymnoascus destructans to study its abiotic and biotic lifestyles
  publication-title: Mycopathologia
  doi: 10.1007/s11046-018-0285-2
– volume: 92
  start-page: 189
  year: 2002
  ident: ref42
  article-title: Strategies for the transformation of filamentous fungi
  publication-title: J. Appl. Microbiol.
  doi: 10.1046/j.1365-2672.2002.01516.x
– volume: 82
  start-page: 5089
  year: 2016
  ident: ref45
  article-title: The indoor fungus Cladosporium halotolerans survives humidity dynamics markedly better than Aspergillus niger and Penicillium rubens despite less growth at lowered steady-state water activity
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00510-16
– volume: 15
  start-page: 28
  year: 2017
  ident: ref46
  article-title: Secondary metabolites from polar organisms
  publication-title: Mar. Drugs
  doi: 10.3390/md15030028
– volume: 42
  start-page: 47
  year: 2019
  ident: ref21
  article-title: Diversity of mycelial fungi in natural and human-affected Antarctic soils
  publication-title: Polar Biol.
  doi: 10.1007/s00300-018-2398-y
SSID ssj0000402000
Score 2.3732598
Snippet Cold-adapted fungi isolated from Antarctica, in particular those belonging to the genus , are producers of secondary metabolites with interesting bioactive...
Cold-adapted fungi isolated from Antarctica, in particular those belonging to the genus Pseudogymnoascus, are producers of secondary metabolites with...
Cold-adapted fungi isolated from Antarctica, in particular those belonging to the genus Pseudogymnoascus , are producers of secondary metabolites with...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2675
SubjectTerms Antarctica
electroporation
Microbiology
protoplasts
Pseudogymnoascus
transformation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQEhKXqgVaUgoKEhcOAa_t2MmRIlYIiY_DVuJmbMcWK9FsBcuBf983ybLarSq4cEmsxHasN2P7TTKZYexAYtMxMsUCsteFMihVvHZFFblXWjmVEr0auLzS57_UxW15u5Dqi3zC-vDAPXDH3GkRwPplHSoldeNik0RstEBnSZpAqy_2vAVjqluDySzivP8uCSushpjGwZMrV31ESZfKpX2oC9f_P475r6vkwt4z_Mw-zUhjftIP9gtbie0GW-vTSL5ssjuKHY1b-WiBhU7afJJy0Lt8OIbU0TFs_HyIuY3TzVN8btD2dzshT9SnHAr9SL7rKKLVSTuF_lOP113erC02Gp6NTs-LWeaEIigtpoVIUqVKOdhTwURhPIiIdLA0BimlUsaaC-9kEJh8rowN8PFKmGbgeeUHgyS_stV20sZtlqeGezJaqgpHYO8CCFRIRiUF4fKYseNXGG2YRRWn5BYPFtYFAW874C0BbzvgM3Y4b_Gnj6jxRt2fJJl5PYqF3V2AhtiZhtj3NCRj-69ytZg79EHEtRGYW2KTteCyVBn71st5_iisdWA-mmfMLGnA0liW77Tj-y4-t66wTJbm-0cMfoetExz096MQP9jq9PE57oIGTf1ep_F_ATCBCLY
  priority: 102
  providerName: Directory of Open Access Journals
Title Genetic Transformation of the Filamentous Fungus Pseudogymnoascus verrucosus of Antarctic Origin
URI https://www.ncbi.nlm.nih.gov/pubmed/31824460
https://www.proquest.com/docview/2324920354
https://pubmed.ncbi.nlm.nih.gov/PMC6883257
https://doaj.org/article/0a62c14439c8436daedf2ed62e0bf37c
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagCIkL4k0KVEHiwiElsR07OSBUEEuFVOCwlfYWbMeGlUpC9yHRf883Trp00QqJS952knl4vvFjhrEXAkZHi-Az8F5lUuOoymuTVT63UkkjQ6CugZNP6vhUfpyVsz_Lo0cCLne6dpRP6nRxdvjr_OINFP41eZywt-DA3FmapVUfUj6l8jq7AbukKZ_ByQj2Y7tMrlJck1IoRcMBfDaMW-6sZMtOxXD-uzDo31Mpr9imyR12ewSV6dEgBXfZNd_dYzeHNJMX99lXii2NW-n0Ckrtu7QPKeBfOplDKlBxv16mE-g-dl-Wft2i7I-up5mqyxQCv6C57ThEqaNuBf2gGj_HvFoP2HTyfvruOBszK2ROKr7KeBAyVNLA33Lac20BVISBJ1KEEErh65xbIxyHcprSt6CPlVy3hc0rWxRBPGR7Xd_5xywNbW7JqakqbI1vjQPAckHLIMH83Cfs1SUZGzdGHafkF2cNvA8ifBMJ3xDhm0j4hL3clPg5RNz4x7NviTOb5yhWdrzQL741o-o1uVHcwW8UtaukUC2-MnDfKg5xDEK7hD2_5GsD3aIBE9N50LwhtFnzXJQyYY8GPm9ehbYQyEjlCdNbErD1Ldt3uvn3GL9bVWhGS73_Hz_6hN2iE1oEyflTtrdarP0zoKGVPYi9CNh-mBUHUeB_A-N2CuY
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+Transformation+of+the+Filamentous+Fungus+Pseudogymnoascus+verrucosus+of+Antarctic+Origin&rft.jtitle=Frontiers+in+microbiology&rft.au=D%C3%ADaz%2C+Ana%C3%AD&rft.au=Villanueva%2C+Pablo&rft.au=Oliva%2C+Vicente&rft.au=Gil-Dur%C3%A1n%2C+Carlos&rft.date=2019-11-22&rft.issn=1664-302X&rft.eissn=1664-302X&rft.volume=10&rft_id=info:doi/10.3389%2Ffmicb.2019.02675&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fmicb_2019_02675
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon