Identification and characterization of a serine protease inhibitor of Paragonimus westermani

Paragonimus westermani is a trematode parasite that causes pulmonary and/or extrapulmonary granulomatous disease in humans. In this study, we identified a full-length gene encoding a novel serine protease inhibitor of P. westermani (PwSERPIN) and characterized the biochemical properties of the recom...

Full description

Saved in:
Bibliographic Details
Published inParasitology research (1987) Vol. 104; no. 3; pp. 495 - 501
Main Authors Hwang, Jin-Hee, Lee, Wook-Gyo, Na, Byoung-Kuk, Lee, Hyeong-Woo, Cho, Shin-Hyeong, Kim, Tong-Soo
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Berlin/Heidelberg : Springer-Verlag 01.02.2009
Springer-Verlag
Springer
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Paragonimus westermani is a trematode parasite that causes pulmonary and/or extrapulmonary granulomatous disease in humans. In this study, we identified a full-length gene encoding a novel serine protease inhibitor of P. westermani (PwSERPIN) and characterized the biochemical properties of the recombinant protein. PwSERPIN had an open reading frame of 1,164 bp, which encoded 387 amino acid residues. Sequence analysis of the primary structure of PwSERPIN revealed that it had the essential structural motifs which were well conserved among the serine protease inhibitor (serpin) superfamily and had shown 16.5-29.6% sequence identities with previously reported serpins from other helminthic parasites. No signal peptide or N-glycosylation site was found in the sequence. Genomic DNA structure analysis showed that PwSERPIN comprised six exons separated by five introns. The bacterially expressed recombinant PwSERPIN effectively inhibited the activities of trypsin, thrombin, and chymotrypsin in a dose-dependent manner, but showed lower inhibitory capacity on cathepsin G and elastases. Expression of PwSERPIN was detected throughout various developmental stages of the parasite, from metacercariae to adult worms, and the transcription level gradually increased with the maturation of the parasite. PwSERPIN was identified in the soluble extract of the parasite, but not in the excretory and secretory products (ESP) and in the insoluble extract of the parasite. These results collectively suggest that the PwSERPIN is an intracellular serpin of P. westermani and that might play primary roles in regulating the activities of intracellular serine proteases of the parasite.
Bibliography:http://dx.doi.org/10.1007/s00436-008-1219-6
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0932-0113
1432-1955
DOI:10.1007/s00436-008-1219-6