Global Adaptive Transformer for Cross-Subject Enhanced EEG Classification

Due to the individual difference, EEG signals from other subjects (source) can hardly be used to decode the mental intentions of the target subject. Although transfer learning methods have shown promising results, they still suffer from poor feature representation or neglect long-range dependencies....

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 31; pp. 2767 - 2777
Main Authors Song, Yonghao, Zheng, Qingqing, Wang, Qiong, Gao, Xiaorong, Heng, Pheng-Ann
Format Journal Article
LanguageEnglish
Published United States IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Due to the individual difference, EEG signals from other subjects (source) can hardly be used to decode the mental intentions of the target subject. Although transfer learning methods have shown promising results, they still suffer from poor feature representation or neglect long-range dependencies. In light of these limitations, we propose Global Adaptive Transformer (GAT), an domain adaptation method to utilize source data for cross-subject enhancement. Our method uses parallel convolution to capture temporal and spatial features first. Then, we employ a novel attention-based adaptor that implicitly transfers source features to the target domain, emphasizing the global correlation of EEG features. We also use a discriminator to explicitly drive the reduction of marginal distribution discrepancy by learning against the feature extractor and the adaptor. Besides, an adaptive center loss is designed to align the conditional distribution. With the aligned source and target features, a classifier can be optimized to decode EEG signals. Experiments on two widely used EEG datasets demonstrate that our method outperforms state-of-the-art methods, primarily due to the effectiveness of the adaptor. These results indicate that GAT has good potential to enhance the practicality of BCI.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1534-4320
1558-0210
1558-0210
DOI:10.1109/TNSRE.2023.3285309