Phase differentiation via combined EBSD and XEDS
Summary Electron backscatter diffraction (EBSD) and orientation imaging microscopy have become established techniques for analysing the crystallographic microstructure of single and multiphase materials. In certain instances, however, it can be difficult and/or time intensive to differentiate phases...
Saved in:
Published in | Journal of microscopy (Oxford) Vol. 213; no. 3; pp. 296 - 305 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Science Ltd
01.03.2004
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Summary
Electron backscatter diffraction (EBSD) and orientation imaging microscopy have become established techniques for analysing the crystallographic microstructure of single and multiphase materials. In certain instances, however, it can be difficult and/or time intensive to differentiate phases within a material by crystallography alone. Traditionally a list of candidate phases is specified prior to data collection. The crystallographic information extracted from the diffraction patterns is then compared with the crystallographic information from these candidate phases, and a best‐fit match is determined. Problems may arise when two phases have similar crystal structures. The phase differentiation process can be improved by collecting chemical information through X‐ray energy‐dispersive spectroscopy (XEDS) simultaneously with the crystallographic information through EBSD and then using the chemical information to pre‐filter the crystallographic phase candidates. This technique improves both the overall speed of the data collection and the accuracy of the final characterization. Examples of this process and the limitations involved will be presented and discussed. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0022-2720 1365-2818 |
DOI: | 10.1111/j.0022-2720.2004.01299.x |