Review: Mechanochemistry of the kinesin‐1 ATPase

ABSTRACT Kinesins are P‐loop NTPases that can do mechanical work. Like small G‐proteins, to which they are related, kinesins execute a program of active site conformational changes that cleaves the terminal phosphate from an NTP substrate. But unlike small G‐proteins, kinesins can amplify and harnes...

Full description

Saved in:
Bibliographic Details
Published inBiopolymers Vol. 105; no. 8; pp. 476 - 482
Main Author Cross, R. A.
Format Journal Article
LanguageEnglish
Published United States John Wiley and Sons Inc 01.08.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:ABSTRACT Kinesins are P‐loop NTPases that can do mechanical work. Like small G‐proteins, to which they are related, kinesins execute a program of active site conformational changes that cleaves the terminal phosphate from an NTP substrate. But unlike small G‐proteins, kinesins can amplify and harness these conformational changes in order to exert force. In this short review I summarize current ideas about how the kinesin active site works and outline how the active site chemistry is coupled to the larger‐scale structural cycle of the kinesin motor domain. Focusing largely on kinesin‐1, the best‐studied kinesin, I discuss how the active site switch machinery of kinesin cycles between three distinct states, how docking of the neck linker stabilizes two of these states, and how tension‐sensitive and position‐sensitive neck linker docking may modulate both the hydrolysis step of ATP turnover and the trapping of product ADP in the active site. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 476–482, 2016.
Bibliography:This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of any preprints from the past two calendar years by emailing the Biopolymers editorial office at
.
biopolymers@wiley.com
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ObjectType-Article-1
ObjectType-Feature-2
This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of any preprints from the past two calendar years by emailing the Biopolymers editorial office at biopolymers@wiley.com.
ISSN:0006-3525
1097-0282
DOI:10.1002/bip.22862