Utilizing Process Variations for Reference Generation in a Flash ADC

This brief presents an experimental study on how to take advantage of the increasing process variations in nanoscale CMOS technologies to achieve small and low-power high-speed analog-to-digital converters (ADCs). Particularly, the need for a reference voltage generation network has been eliminated...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems. II, Express briefs Vol. 56; no. 5; pp. 364 - 368
Main Authors Sundstrom, T., Alvandpour, A.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2009
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This brief presents an experimental study on how to take advantage of the increasing process variations in nanoscale CMOS technologies to achieve small and low-power high-speed analog-to-digital converters (ADCs). Particularly, the need for a reference voltage generation network has been eliminated in a 4-bit Flash ADC in 90-nm CMOS, with small-sized comparators. The native comparator offsets, resulting from the process-variation-induced mismatch, are used as the only source of reference levels, and redundancy is used to acquire the desired resolution. The measured performance of the 1.5-GS/s ADC is comparable to traditional state-of-the art ADCs and dissipates 23 mW.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:1549-7747
1558-3791
DOI:10.1109/TCSII.2009.2019165