Reducing cadmium in rice using metallothionein surface-engineered bacteria WH16-1-MT

Cadmium (Cd) accumulation in rice grains poses a health risk for humans. In this study, a bacterium, Alishewanella sp. WH16-1-MT, was engineered to express metallothionein on the cell surface. Compared with the parental WH16-1 strain, Cd2+ adsorption efficiency of WH16-1-MT in medium was increased f...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental research Vol. 203; p. 111801
Main Authors Yu, Ying, Shi, Kaixiang, Li, Xuexue, Luo, Xiong, Wang, Mengjie, Li, Lin, Wang, Gejiao, Li, Mingshun
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 01.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Cadmium (Cd) accumulation in rice grains poses a health risk for humans. In this study, a bacterium, Alishewanella sp. WH16-1-MT, was engineered to express metallothionein on the cell surface. Compared with the parental WH16-1 strain, Cd2+ adsorption efficiency of WH16-1-MT in medium was increased from 1.2 to 2.6 mg/kg dry weight. The WH16-1-MT strain was then incubated with rice in moderately Cd-contaminated paddy soil. Compared with WH16-1, inoculation with WH16-1-MT increased plant height, panicle length and thousand-kernel weight, and decreased the levels of ascorbic acid and glutathione and the activity of peroxidase. Compared with WH16-1, WH16-1-MT inoculation significantly reduced the concentrations of Cd in brown rice, husks, roots and shoots by 44.0 %, 45.5 %, 36.1 % and 47.2 %, respectively. Moreover, inoculation with WH16-1-MT reduced the bioavailability of Cd in soil, with the total Cd proportion in oxidizable and residual states increased from 29 % to 32 %. Microbiome analysis demonstrated that the addition of WH16-1-MT did not significantly alter the original bacterial abundance and community structure in soil. These results indicate that WH16-1-MT can be used as a novel microbial treatment approach to reduce Cd in rice grown in moderately Cd-contaminated paddy soil. •The engineered WH16-1-MT strain increased Cd removal efficiency from medium and soil.•WH16-1-MT improved plant height, panicle length and thousand-kernel weight.•WH16-1-MT decreased the activities of antioxidant enzyme under Cd stress conditions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0013-9351
1096-0953
1096-0953
DOI:10.1016/j.envres.2021.111801