Role of fibrillin-1 in hypertensive and diabetic glomerular disease

The microfibrillar protein fibrillin-1 is a component of the mesangial matrix. Defects in fibrillin-1 predisposes individuals to vascular damage in Marfan syndrome, but the role of fibrillin-1 in kidney disease is unknown. We hypothesized that fibrillin-1 is involved in hypertensive or diabetic glom...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of physiology. Renal physiology Vol. 290; no. 6; pp. F1329 - F1336
Main Authors Hartner, Andrea, Schaefer, Liliana, Porst, Markus, Cordasic, Nada, Gabriel, Anke, Klanke, Bernd, Reinhardt, Dieter P, Hilgers, Karl F
Format Journal Article
LanguageEnglish
Published United States 01.06.2006
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The microfibrillar protein fibrillin-1 is a component of the mesangial matrix. Defects in fibrillin-1 predisposes individuals to vascular damage in Marfan syndrome, but the role of fibrillin-1 in kidney disease is unknown. We hypothesized that fibrillin-1 is involved in hypertensive or diabetic glomerular disease. DOCA-salt hypertension or streptozotocin (STZ) diabetes led to a significant increase in glomerular fibrillin-1 deposition. To test the functional role of fibrillin-1, DOCA hypertension and STZ diabetes were induced in mice homozygous for a mutation leading to a fivefold lower expression of fibrillin-1 (mgR/mgR). Untreated male mgR/mgR mice usually die from aortic dissection during the first 4 mo of life. All DOCA-treated mgR/mgR mice died within 2 wk after onset of DOCA treatment. DOCA-treated heterozygous (mgR/+) and their wild-type littermates displayed similar blood pressure levels, but albuminuria was significantly lower in mgR/+ than in wild-type mice after DOCA treatment. Similarly, STZ diabetic mgR/mgR and mgR/+ developed lower albuminuria than wild-type mice despite higher blood glucose levels in mgR/mgR and mgR/+ compared with wild-type mice. Blood pressure, blood glucose, and albuminuria did not differ among untreated mgR/mgR, mgR/+, and wild-type mice, respectively. In diabetic mgR/+ and mgR/mgR, but not in wild-type mice, an induction of glomerular decorin expression was observed. Thus underexpression of fibrillin-1 predisposes individuals to lethal aortic dissection in the presence of hypertension. On the other hand, albuminuria as a parameter of microvascular damage in hypertension and diabetes was ameliorated in fibrillin-1-underexpressing mice, possibly due to a compensatory upregulation of decorin. We conclude that fibrillin-1 may contribute to glomerular damage in hypertensive and diabetic kidney disease.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1931-857X
1522-1466
DOI:10.1152/ajprenal.00284.2005