Dental silicate ceramics surface modification by nonthermal plasma: A systematic review

Nonthermal atmospheric or low-pressure plasma (NTP) can improve the surface characteristics of dental materials without affecting their bulk properties. This study aimed to systematically review the available scientific evidence on the effectiveness of using NTP for the surface treatment of etchable...

Full description

Saved in:
Bibliographic Details
Published inDental materials Vol. 40; no. 3; pp. 531 - 545
Main Authors Birk, Luka, Rener-Sitar, Ksenija, Benčina, Metka, Junkar, Ita
Format Journal Article
LanguageEnglish
Published England Elsevier Inc 01.03.2024
Subjects
Online AccessGet full text
ISSN0109-5641
1879-0097
1879-0097
DOI10.1016/j.dental.2024.01.001

Cover

Loading…
More Information
Summary:Nonthermal atmospheric or low-pressure plasma (NTP) can improve the surface characteristics of dental materials without affecting their bulk properties. This study aimed to systematically review the available scientific evidence on the effectiveness of using NTP for the surface treatment of etchable, silica-based dental ceramics before cementation, and elucidate its potential to replace the hazardous and technically demanding protocol of hydrofluoric acid (HF) etching. A valid search query was developed with the help of PubMed's Medical Subject Headings (MeSH) vocabulary thesaurus and translated to three electronic databases: PubMed, Web of Science, and Scopus. The methodological quality of the studies was assessed according to an adapted version of the Methodological Index for Non-Randomized Studies (MINORS). Thirteen in vitro study reports published between 2008 and 2023 were selected for the qualitative and quantitative data synthesis. The implemented methodologies were diverse, comprising 19 different plasma treatment protocols with various device settings. Argon, helium, oxygen, or atmospheric air plasma may significantly increase the wettability and roughness of silicate ceramics by plasma cleaning, etching, and activation, but the treatment generally results in inferior bond strength values after cementation compared to those achieved with HF etching. The technically demanding protocol of plasma-enhanced chemical vapor deposition was employed more commonly, in which the surface deposition of hexamethyl disiloxane with subsequent oxygen plasma activation proved the most promising, yielding bond strengths comparable to those of the positive control. Lack of power analysis, missing adequate control, absence of examiner blinding, and non-performance of specimen aging were common methodological frailties that contributed most to the increase in bias risk (mean MINORS score 15.3 ± 1.1). NTP can potentially improve the adhesive surface characteristics of dental silicate ceramics in laboratory conditions, but the conventional protocol of HF etching still performs better in terms of the resin-ceramic bond strength and longevity. More preclinical research is needed to determine the optimal NTP treatment settings and assess the aging of plasma-treated ceramic surfaces in atmospheric conditions.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Undefined-1
ObjectType-Feature-3
ObjectType-Review-4
content type line 23
ISSN:0109-5641
1879-0097
1879-0097
DOI:10.1016/j.dental.2024.01.001