Design and Implementation of Deep Neural Network-Based Control for Automatic Parking Maneuver Process

This article focuses on the design, test, and validation of a deep neural network (DNN)-based control scheme capable of predicting optimal motion commands for autonomous ground vehicles (AGVs) during the parking maneuver process. The proposed design utilizes a multilayer structure. In the first laye...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 33; no. 4; pp. 1400 - 1413
Main Authors Chai, Runqi, Tsourdos, Antonios, Savvaris, Al, Chai, Senchun, Xia, Yuanqing, Chen, C. L. Philip
Format Journal Article
LanguageEnglish
Published United States IEEE 01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This article focuses on the design, test, and validation of a deep neural network (DNN)-based control scheme capable of predicting optimal motion commands for autonomous ground vehicles (AGVs) during the parking maneuver process. The proposed design utilizes a multilayer structure. In the first layer, a desensitized trajectory optimization method is iteratively performed to establish a set of time-optimal parking trajectories with the consideration of noise-perturbed initial configurations. Subsequently, by using the preplanned optimal parking trajectory data set, several DNNs are trained in order to learn the functional relationship between the system state-control actions in the second layer. To obtain further improvements regarding the DNN performances, a simple yet effective data aggregation approach is designed and applied. These trained DNNs are then utilized as the motion controllers to generate feedback actions in real time. Numerical results were executed to demonstrate the effectiveness and the real-time applicability of using the proposed control scheme to plan and steer the AGV parking maneuver. Experimental results were also provided to justify the algorithm performance in real-world implementations.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2020.3042120