Characterization of endolysin from a Salmonella Typhimurium-infecting bacteriophage SPN1S

The full genome sequence of bacteriophage SPN1S, which infects Salmonella, contains genes that encode homologues of holin, endolysin and Rz/Rz1-like accessory proteins, which are 4 phage lysis proteins. The ability of these proteins to lyse Escherichia coli cells when overexpressed was evaluated. In...

Full description

Saved in:
Bibliographic Details
Published inResearch in microbiology Vol. 163; no. 3; pp. 233 - 241
Main Authors Lim, Jeong-A., Shin, Hakdong, Kang, Dong-Hyun, Ryu, Sangryeol
Format Journal Article
LanguageEnglish
Published Issy-les-Moulineaux Elsevier Masson SAS 01.04.2012
Elsevier Masson
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The full genome sequence of bacteriophage SPN1S, which infects Salmonella, contains genes that encode homologues of holin, endolysin and Rz/Rz1-like accessory proteins, which are 4 phage lysis proteins. The ability of these proteins to lyse Escherichia coli cells when overexpressed was evaluated. In contrast to other endolysins, the expression of endolysin and Rz/Rz1-like proteins was sufficient to cause lysis. The endolysin was tagged with oligohistidine at the N-terminus and purified by affinity chromatography. The endolysin has a lysozyme-like superfamily domain, and its activity was much stronger than that of lysozyme from chicken egg white. We used the chelating agent, ethylenediaminetetraacetic acid (EDTA), to increase outer membrane permeability, and it greatly enhanced the lytic activity of SPN1S endolysin. The antimicrobial activity of endolysin was stable over broad pH and temperature ranges and was active from pH 7.0 to 10.5 and from 25 °C to 45 °C. The SPN1S endolysin could kill most of the tested Gram-negative strains, but the Gram-positive strains were resistant. SPN1S endolysin, like lysozyme, cleaves the glycosidic bond of peptidoglycan. These results suggested that SPN1S endolysin has potential as a therapeutic agent against Gram-negative bacteria.
Bibliography:http://dx.doi.org/10.1016/j.resmic.2012.01.002
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0923-2508
1769-7123
DOI:10.1016/j.resmic.2012.01.002