Perturbative path-integral of string fields and the A∞ structure of the BV master equation

The perturbative path-integral gives a morphism of the (quantum) A∞ structure intrinsic to each quantum field theory, which we show explicitly on the basis of the homological perturbation. As is known, in the Batalin–Vilkovisky (BV) formalism, any effective action also solves the BV master equation,...

Full description

Saved in:
Bibliographic Details
Published inProgress of theoretical and experimental physics Vol. 2022; no. 11
Main Authors Masuda, Toru, Matsunaga, Hiroaki
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 01.11.2022
Subjects
Online AccessGet full text
ISSN2050-3911
2050-3911
DOI10.1093/ptep/ptac132

Cover

Abstract The perturbative path-integral gives a morphism of the (quantum) A∞ structure intrinsic to each quantum field theory, which we show explicitly on the basis of the homological perturbation. As is known, in the Batalin–Vilkovisky (BV) formalism, any effective action also solves the BV master equation, which implies that the path-integral can be understood as a morphism of the BV differential. Since each solution of the BV master equation is in one-to-one correspondence with a quantum A∞ structure, the path-integral preserves this intrinsic A∞ structure of quantum field theory, where A∞ reduces to L∞ whenever multiplications of space-time fields are graded commutative. We apply these ideas to string-field theory and (re-)derive some quantities based on the perturbative path-integral, such as effective theories with finite α′, reduction of gauge and unphysical degrees, the S-matrix, and gauge-invariant observables.
AbstractList The perturbative path-integral gives a morphism of the (quantum) A∞ structure intrinsic to each quantum field theory, which we show explicitly on the basis of the homological perturbation. As is known, in the Batalin–Vilkovisky (BV) formalism, any effective action also solves the BV master equation, which implies that the path-integral can be understood as a morphism of the BV differential. Since each solution of the BV master equation is in one-to-one correspondence with a quantum A∞ structure, the path-integral preserves this intrinsic A∞ structure of quantum field theory, where A∞ reduces to L∞ whenever multiplications of space-time fields are graded commutative. We apply these ideas to string-field theory and (re-)derive some quantities based on the perturbative path-integral, such as effective theories with finite α′, reduction of gauge and unphysical degrees, the S-matrix, and gauge-invariant observables.
The perturbative path-integral gives a morphism of the (quantum) A∞ structure intrinsic to each quantum field theory, which we show explicitly on the basis of the homological perturbation. As is known, in the Batalin–Vilkovisky (BV) formalism, any effective action also solves the BV master equation, which implies that the path-integral can be understood as a morphism of the BV differential. Since each solution of the BV master equation is in one-to-one correspondence with a quantum A∞ structure, the path-integral preserves this intrinsic A∞ structure of quantum field theory, where A∞ reduces to L∞ whenever multiplications of space-time fields are graded commutative. We apply these ideas to string-field theory and (re-)derive some quantities based on the perturbative path-integral, such as effective theories with finite α′, reduction of gauge and unphysical degrees, the S-matrix, and gauge-invariant observables.
Author Masuda, Toru
Matsunaga, Hiroaki
Author_xml – sequence: 1
  givenname: Toru
  surname: Masuda
  fullname: Masuda, Toru
– sequence: 2
  givenname: Hiroaki
  surname: Matsunaga
  fullname: Matsunaga, Hiroaki
  email: hiroaki.matsunaga@omu.ac.jp
BookMark eNp9kE1OwzAQhS1UJErpjgNYYsGGgMfOn5el4k-qBAtghRS5ybhNlSap7SBxA07B4TgJDu0CIcFmPBp_7439Dsmgbmok5BjYOTApLlqHrS8qB8H3yJCziAVCAgx-9AdkbO2KMQYsSVgIQ_LygMZ1Zq5c-Yq0VW4ZlLXDhVEVbTS1zpT1guoSq8JSVRfULZFOPt8_-qsu91LsuX56-UzXyjo0FDed92vqI7KvVWVxvDtH5On66nF6G8zub-6mk1mQhzG4QAJynhdJxOIEkziGlEteMFbgXGPonx1GIS9EHEciTlUqZCikRGCRlqAjJcWInGx9W9NsOrQuWzWdqf3KTEAC3iLliafOtlRuGmsN6qw15VqZtwxY1keY9RFmuwg9zn_heem-v-WMKqu_RKdbUdO1_9t_AZOMhn0
CitedBy_id crossref_primary_10_1093_ptep_ptae105
crossref_primary_10_1002_prop_202400169
crossref_primary_10_1007_JHEP05_2024_040
crossref_primary_10_1002_prop_202400190
crossref_primary_10_1093_ptep_ptaf021
crossref_primary_10_1007_JHEP09_2024_048
Cites_doi 10.1103/PhysRevD.100.045017
10.1007/s11005-015-0791-9
10.1007/JHEP11(2021)208
10.1142/S0129055X07002912
10.1016/0370-2693(81)90205-7
10.1016/0550-3213(86)90155-0
10.1088/1126-6708/2008/03/050
10.1088/1126-6708/2009/10/066
10.1007/JHEP01(2017)108
10.1007/JHEP10(2017)057
10.1007/s00220-014-2027-8
10.1088/1126-6708/2008/07/063
10.1515/9780691213866
10.1088/1126-6708/2004/04/070
10.1007/JHEP05(2017)095
10.4310/ATMP.2006.v10.n4.a1
10.1007/JHEP05(2018)020
10.1016/0550-3213(83)90680-6
10.1063/1.5022890
10.1007/JHEP03(2012)012
10.1007/JHEP11(2015)187
10.1007/BF02097392
10.1090/conm/718/14479
10.1007/JHEP04(2019)143
10.1007/PL00005575
10.1088/1126-6708/2001/07/016
10.1016/0550-3213(93)90388-6
10.1002/prop.201900025
10.1093/ptep/ptab159
10.1016/S0550-3213(02)00495-9
10.1007/JHEP10(2019)119
10.1142/S0217751X97001031
10.1007/s00220-012-1654-1
10.1007/JHEP07(2019)115
10.1088/1126-6708/1999/12/027
10.1007/s11005-013-0615-8
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press on behalf of the Physical Society of Japan. 2022
The Author(s) 2022. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press on behalf of the Physical Society of Japan. 2022
– notice: The Author(s) 2022. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID TOX
AAYXX
CITATION
3V.
7XB
88I
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
HCIFZ
M2P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1093/ptep/ptac132
DatabaseName Oxford Journals Open Access Collection
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Collection (ProQuest)
Science Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 2050-3911
ExternalDocumentID 10_1093_ptep_ptac132
10.1093/ptep/ptac132
GroupedDBID .I3
0R~
4.4
5VS
AAFWJ
AAMVS
AAPPN
AAPXW
AAVAP
ABEJV
ABGNP
ABPTD
ABXVV
ACGFS
ADHZD
AENEX
AENZO
AFPKN
AFULF
AIBLX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMNDL
BAYMD
BTTYL
CIDKT
D~K
EBS
EJD
ER.
GROUPED_DOAJ
H13
IAO
ISR
ITC
KQ8
KSI
M~E
O9-
OAWHX
OJQWA
OK1
PEELM
RHF
ROL
ROX
RXO
TOX
~D7
88I
AAYXX
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
M2P
PHGZM
PHGZT
PIMPY
3V.
7XB
8FK
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c461t-91e22cd75067e76618292d00debfe49114542d3665368a8394399e105f91f5a93
IEDL.DBID BENPR
ISSN 2050-3911
IngestDate Mon Jun 30 12:23:32 EDT 2025
Thu Apr 24 23:11:27 EDT 2025
Tue Jul 01 02:09:15 EDT 2025
Fri Jan 31 08:06:30 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Funded by SCOAP3. SCOAP3 and OUP support the goals of the International Year of Basic Sciences for Sustainable Development
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c461t-91e22cd75067e76618292d00debfe49114542d3665368a8394399e105f91f5a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3171491827?pq-origsite=%requestingapplication%
PQID 3171491827
PQPubID 7121340
ParticipantIDs proquest_journals_3171491827
crossref_primary_10_1093_ptep_ptac132
crossref_citationtrail_10_1093_ptep_ptac132
oup_primary_10_1093_ptep_ptac132
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Progress of theoretical and experimental physics
PublicationYear 2022
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Crainic (2022111018461830400_bib19)
Sen (2022111018461830400_bib27) 2019; 1910
Kajiura (2022111018461830400_bib49_1665145393212) 2002
Kajiura (2022111018461830400_bib18) 2007; 19
Batalin (2022111018461830400_bib2) 1981; 102
Macrelli (2022111018461830400_bib9) 2019; 100
Sen (2022111018461830400_bib31) 1999; 9912
Munster (2022111018461830400_bib17) 2013; 321
Barannikov (2022111018461830400_bib4) 2013; 103
Matsunaga (2022111018461830400_bib12) 2019; 1904
Schnabl (2022111018461830400_bib32) 2006; 10
Costello (2022111018461830400_bib42)
Zwiebach (2022111018461830400_bib1) 1993; 390
Schwarz (2022111018461830400_bib6) 1993; 155
Erler (2022111018461830400_bib30) 2009; 0910
Berkovits (2022111018461830400_bib34) 2012; 1203
Matsunaga (2022111018461830400_bib35) 2017; 1705
Matsunaga (2022111018461830400_bib37) 2018; 1805
Albert (2022111018461830400_bib21)
Arvanitakis (2022111018461830400_bib40) 2019; 1907
Masuda (2022111018461830400_bib14) 2022; 2022
Barannikov (2022111018461830400_bib48_1665144759370) 2007
Konopka (2022111018461830400_bib39) 2015; 1511
Sen (2022111018461830400_bib11) 2017; 1701
Doubek (2022111018461830400_bib20) (2019)
Gwilliam (2022111018461830400_bib43) 2018
Doubek (2022111018461830400_bib5) 2015; 1512
Alexandrov (2022111018461830400_bib7) 1997; 12
Erler (2022111018461830400_bib13) 2021; 2111
Batalin (2022111018461830400_bib46_1665144022106) 1983
Aisaka (2022111018461830400_bib24) 2004; 0404
Kato (2022111018461830400_bib25) 1983; 212
Johnson-Freyd (2022111018461830400_bib44) 2015; 105
Ellwood (2022111018461830400_bib33) 2001; 0107
Pulmann (2022111018461830400_bib22) 2016
Herbst (2022111018461830400_bib16)
Erler (2022111018461830400_bib36) 2017; 1710
Munster (2022111018461830400_bib23) 2014; 330
Nakatsu (2022111018461830400_bib41) 2002; 642
Jurco (2022111018461830400_bib45) 2020
Kiermaier (2022111018461830400_bib28) 2008; 0803
Kiermaier (2022111018461830400_bib29) 2008; 0807
Jurco (2022111018461830400_bib10) (2020)
Markl (2022111018461830400_bib15) 2001; 221
Henneaux (2022111018461830400_bib3) 1992
Witten (2022111018461830400_bib26) 1986; 268
Jurco (2022111018461830400_bib8) 2019; 67
Braun (2022111018461830400_bib38) 2018; 59
References_xml – volume: 100
  start-page: 045017
  year: 2019
  ident: 2022111018461830400_bib9
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.100.045017
– start-page: 215
  volume-title: Commun.Math.Phys.
  year: (2019)
  ident: 2022111018461830400_bib20
– volume: 105
  start-page: 1605
  year: 2015
  ident: 2022111018461830400_bib44
  publication-title: Lett. Math. Phys.
  doi: 10.1007/s11005-015-0791-9
– volume: 2111
  start-page: 208
  year: 2021
  ident: 2022111018461830400_bib13
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP11(2021)208
– ident: 2022111018461830400_bib42
– volume: 19
  start-page: 1
  year: 2007
  ident: 2022111018461830400_bib18
  publication-title: Rev. Math. Phys.
  doi: 10.1142/S0129055X07002912
– volume: 102
  start-page: 27
  year: 1981
  ident: 2022111018461830400_bib2
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(81)90205-7
– volume: 268
  start-page: 253
  year: 1986
  ident: 2022111018461830400_bib26
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(86)90155-0
– volume: 0803
  start-page: 050
  year: 2008
  ident: 2022111018461830400_bib28
  publication-title: J. High Energy Phys.
  doi: 10.1088/1126-6708/2008/03/050
– volume: 0910
  start-page: 066
  year: 2009
  ident: 2022111018461830400_bib30
  publication-title: J. High Energy Phys.
  doi: 10.1088/1126-6708/2009/10/066
– volume: 1701
  start-page: 108
  year: 2017
  ident: 2022111018461830400_bib11
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP01(2017)108
– volume: 1710
  start-page: 057
  year: 2017
  ident: 2022111018461830400_bib36
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP10(2017)057
– volume: 330
  start-page: 1227
  year: 2014
  ident: 2022111018461830400_bib23
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-014-2027-8
– volume: 0807
  start-page: 063
  year: 2008
  ident: 2022111018461830400_bib29
  publication-title: J. High Energy Phys.
  doi: 10.1088/1126-6708/2008/07/063
– volume-title: Quantization of Gauge Systems
  year: 1992
  ident: 2022111018461830400_bib3
  doi: 10.1515/9780691213866
– volume: 0404
  start-page: 070
  year: 2004
  ident: 2022111018461830400_bib24
  publication-title: J. High Energy Phys.
  doi: 10.1088/1126-6708/2004/04/070
– year: 2016
  ident: 2022111018461830400_bib22
  article-title: S-matrix and homological perturbation lemma
– volume: 1705
  start-page: 095
  year: 2017
  ident: 2022111018461830400_bib35
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP05(2017)095
– start-page: rnm075
  volume-title: Int. Math. Res. Not.
  year: 2007
  ident: 2022111018461830400_bib48_1665144759370
– volume: 10
  start-page: 433
  year: 2006
  ident: 2022111018461830400_bib32
  publication-title: Adv. Theor. Math. Phys.
  doi: 10.4310/ATMP.2006.v10.n4.a1
– volume-title: Presentation at the Solvay workshop on “Higher Spin Gauge Theories, Topological Field Theory and Deformation Quantization”
  year: 2020
  ident: 2022111018461830400_bib45
– start-page: 361
  volume-title: Nucl. Phys. B
  year: 2002
  ident: 2022111018461830400_bib49_1665145393212
– volume: 1805
  start-page: 020
  year: 2018
  ident: 2022111018461830400_bib37
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP05(2018)020
– volume: 212
  start-page: 443
  year: 1983
  ident: 2022111018461830400_bib25
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(83)90680-6
– ident: 2022111018461830400_bib21
– volume: 59
  start-page: 063512
  year: 2018
  ident: 2022111018461830400_bib38
  publication-title: J. Math. Phys.
  doi: 10.1063/1.5022890
– volume: 1203
  start-page: 012
  year: 2012
  ident: 2022111018461830400_bib34
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP03(2012)012
– start-page: 2567
  volume-title: Phys. Rev. D
  year: 1983
  ident: 2022111018461830400_bib46_1665144022106
– volume: 1511
  start-page: 187
  year: 2015
  ident: 2022111018461830400_bib39
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP11(2015)187
– volume: 155
  start-page: 249
  year: 1993
  ident: 2022111018461830400_bib6
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF02097392
– ident: 2022111018461830400_bib19
– start-page: 175
  volume-title: Topology and Quantum Theory in Interaction
  year: 2018
  ident: 2022111018461830400_bib43
  doi: 10.1090/conm/718/14479
– volume: 1904
  start-page: 143
  year: 2019
  ident: 2022111018461830400_bib12
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP04(2019)143
– volume: 221
  start-page: 367
  year: 2001
  ident: 2022111018461830400_bib15
  publication-title: Commun. Math. Phys.
  doi: 10.1007/PL00005575
– ident: 2022111018461830400_bib16
– volume: 0107
  start-page: 016
  year: 2001
  ident: 2022111018461830400_bib33
  publication-title: J. High Energy Phys.
  doi: 10.1088/1126-6708/2001/07/016
– start-page: 003
  volume-title: JHEP
  year: (2020)
  ident: 2022111018461830400_bib10
– volume: 390
  start-page: 33
  year: 1993
  ident: 2022111018461830400_bib1
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(93)90388-6
– volume: 67
  start-page: 1900025
  year: 2019
  ident: 2022111018461830400_bib8
  publication-title: Fortschr. Phys.
  doi: 10.1002/prop.201900025
– volume: 2022
  start-page: 013B06
  year: 2022
  ident: 2022111018461830400_bib14
  publication-title: Prog. Theor. Exp. Phys.
  doi: 10.1093/ptep/ptab159
– volume: 642
  start-page: 13
  year: 2002
  ident: 2022111018461830400_bib41
  publication-title: Nucl. Phys. B
  doi: 10.1016/S0550-3213(02)00495-9
– volume: 1910
  start-page: 119
  year: 2019
  ident: 2022111018461830400_bib27
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP10(2019)119
– volume: 12
  start-page: 1405
  year: 1997
  ident: 2022111018461830400_bib7
  publication-title: Int. J. Mod. Phys. A
  doi: 10.1142/S0217751X97001031
– volume: 321
  start-page: 769
  year: 2013
  ident: 2022111018461830400_bib17
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-012-1654-1
– volume: 1907
  start-page: 115
  year: 2019
  ident: 2022111018461830400_bib40
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP07(2019)115
– volume: 1512
  start-page: 158
  year: 2015
  ident: 2022111018461830400_bib5
  publication-title: J. High Energy Phys.
– volume: 9912
  start-page: 027
  year: 1999
  ident: 2022111018461830400_bib31
  publication-title: J. High Energy Phys.
  doi: 10.1088/1126-6708/1999/12/027
– volume: 103
  start-page: 605
  year: 2013
  ident: 2022111018461830400_bib4
  publication-title: Lett. Math. Phys.
  doi: 10.1007/s11005-013-0615-8
SSID ssj0001077041
Score 2.3322496
Snippet The perturbative path-integral gives a morphism of the (quantum) A∞ structure intrinsic to each quantum field theory, which we show explicitly on the basis of...
SourceID proquest
crossref
oup
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algebra
Physics
Quantum field theory
Spacetime
Title Perturbative path-integral of string fields and the A∞ structure of the BV master equation
URI https://www.proquest.com/docview/3171491827
Volume 2022
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV29TsMwELagFRILPwVEoVQeYEJWEztxkgm1qKhColSoRR2QIsdxWEqaNuUdeAoejifhnDhUHYDFQ3LTnX33nX33HUKXQtN4ccmIEswjTsxtEnHfJhzQAAdAQUXRSPsw5IOJcz91p-bCLTdllZVPLBx1PJf6jrzD9KTuANCwd5MtiJ4apV9XzQiNbVQHF-zDPq_3-sPR0_qWxfI8y7FNxTtk751spTJYhLQZ3YhFG_1tlUMuoszdAdoz8BB3S3seoi2VNtC-gYrYHMS8gXaKyk2ZH6GXkVpC2IgKAm-sBwwTQwExw_ME67Ec6SsuCtVyLNIYA-LD3a-PT1xSx74vlZbTX3vP-E1o4gSsFiUD-DGa3PXHtwNiRiYQ6XB7Ba5LUSpjgAHcUx7EXp8GNLasWEWJAvXZjuvQmIElGPcFgCOdjijAWElgJ64I2AmqpfNUnSIcM9eXSlMHQOIa0cR3XZ6Af3N0FmIr1UTXlfJCafjE9ViLWVi-a7NQqzo0qm6iqx_prOTR-EUOgx3-EWlVRgrNgcvD9fY4-_v3OdqluoOhaCdsoRqoWl0ArlhFbbN52kVeDuv4cfoNu0fRLw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsQwDLXQIAQXdsRODnBCFW3Spp0DQqwathFCgDgglS4uF-gMdBDiD_gKPoGP4kuw2xTEAThx6aG1lMpx7JfEfgZYjpjGSyfKwkj5lptqx4p14Fia0IAmQCGjspD2uK1b5-7BpXfZB291LQynVdY-sXTUaSfhM_I1xZ26m4SG_Y3uvcVdo_h2tW6hUZnFIT4_0ZatWN_fofldkXJv92y7ZZmuAlbiaqdHqxulTFKKlNpHn8JTIJsyte0U4wxpBMf1XJkq-lmlg4jwAyN2JBiSNZ3Mi5h8iVx-v8sVrQ3o39ptn5x-nerYvm-7jsmwt5tqrdvDLj2ixFHyW-z7Vk9XB4Ayqu2NwrCBo2Kzsp8x6MN8HEYMNBVm4RfjMFBmiibFBFyd4AOFqbgkDBfc0NgylBO3opMJbgOS34gyMa4QUZ4KQphi8_3lVVRUtY8PyHL8dutC3EVM1CDwvmIcn4Tzf1HmFDTyTo7TIFLlBQkyVQFtlGOZBZ6nM_KnLu96HMQZWK2VFyaGv5zbaNyG1T26ClnVoVH1DKx8Sncr3o4f5ATNwx8i8_UkhWaBF-GXOc7-_nkJBltnx0fh0X77cA6GJFdPlKWM89AgteMCYZpevGgMScD1f9vuB7B8CRQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Perturbative+path-integral+of+string+fields+and+the+A%E2%88%9E+structure+of+the+BV+master+equation&rft.jtitle=Progress+of+theoretical+and+experimental+physics&rft.au=Masuda%2C+Toru&rft.au=Matsunaga%2C+Hiroaki&rft.date=2022-11-01&rft.pub=Oxford+University+Press&rft.eissn=2050-3911&rft.volume=2022&rft.issue=11&rft_id=info:doi/10.1093%2Fptep%2Fptac132&rft.externalDocID=10.1093%2Fptep%2Fptac132
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-3911&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-3911&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-3911&client=summon