Perturbative path-integral of string fields and the A∞ structure of the BV master equation
The perturbative path-integral gives a morphism of the (quantum) A∞ structure intrinsic to each quantum field theory, which we show explicitly on the basis of the homological perturbation. As is known, in the Batalin–Vilkovisky (BV) formalism, any effective action also solves the BV master equation,...
Saved in:
Published in | Progress of theoretical and experimental physics Vol. 2022; no. 11 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford
Oxford University Press
01.11.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2050-3911 2050-3911 |
DOI | 10.1093/ptep/ptac132 |
Cover
Abstract | The perturbative path-integral gives a morphism of the (quantum) A∞ structure intrinsic to each quantum field theory, which we show explicitly on the basis of the homological perturbation. As is known, in the Batalin–Vilkovisky (BV) formalism, any effective action also solves the BV master equation, which implies that the path-integral can be understood as a morphism of the BV differential. Since each solution of the BV master equation is in one-to-one correspondence with a quantum A∞ structure, the path-integral preserves this intrinsic A∞ structure of quantum field theory, where A∞ reduces to L∞ whenever multiplications of space-time fields are graded commutative. We apply these ideas to string-field theory and (re-)derive some quantities based on the perturbative path-integral, such as effective theories with finite α′, reduction of gauge and unphysical degrees, the S-matrix, and gauge-invariant observables. |
---|---|
AbstractList | The perturbative path-integral gives a morphism of the (quantum) A∞ structure intrinsic to each quantum field theory, which we show explicitly on the basis of the homological perturbation. As is known, in the Batalin–Vilkovisky (BV) formalism, any effective action also solves the BV master equation, which implies that the path-integral can be understood as a morphism of the BV differential. Since each solution of the BV master equation is in one-to-one correspondence with a quantum A∞ structure, the path-integral preserves this intrinsic A∞ structure of quantum field theory, where A∞ reduces to L∞ whenever multiplications of space-time fields are graded commutative. We apply these ideas to string-field theory and (re-)derive some quantities based on the perturbative path-integral, such as effective theories with finite α′, reduction of gauge and unphysical degrees, the S-matrix, and gauge-invariant observables. The perturbative path-integral gives a morphism of the (quantum) A∞ structure intrinsic to each quantum field theory, which we show explicitly on the basis of the homological perturbation. As is known, in the Batalin–Vilkovisky (BV) formalism, any effective action also solves the BV master equation, which implies that the path-integral can be understood as a morphism of the BV differential. Since each solution of the BV master equation is in one-to-one correspondence with a quantum A∞ structure, the path-integral preserves this intrinsic A∞ structure of quantum field theory, where A∞ reduces to L∞ whenever multiplications of space-time fields are graded commutative. We apply these ideas to string-field theory and (re-)derive some quantities based on the perturbative path-integral, such as effective theories with finite α′, reduction of gauge and unphysical degrees, the S-matrix, and gauge-invariant observables. |
Author | Masuda, Toru Matsunaga, Hiroaki |
Author_xml | – sequence: 1 givenname: Toru surname: Masuda fullname: Masuda, Toru – sequence: 2 givenname: Hiroaki surname: Matsunaga fullname: Matsunaga, Hiroaki email: hiroaki.matsunaga@omu.ac.jp |
BookMark | eNp9kE1OwzAQhS1UJErpjgNYYsGGgMfOn5el4k-qBAtghRS5ybhNlSap7SBxA07B4TgJDu0CIcFmPBp_7439Dsmgbmok5BjYOTApLlqHrS8qB8H3yJCziAVCAgx-9AdkbO2KMQYsSVgIQ_LygMZ1Zq5c-Yq0VW4ZlLXDhVEVbTS1zpT1guoSq8JSVRfULZFOPt8_-qsu91LsuX56-UzXyjo0FDed92vqI7KvVWVxvDtH5On66nF6G8zub-6mk1mQhzG4QAJynhdJxOIEkziGlEteMFbgXGPonx1GIS9EHEciTlUqZCikRGCRlqAjJcWInGx9W9NsOrQuWzWdqf3KTEAC3iLliafOtlRuGmsN6qw15VqZtwxY1keY9RFmuwg9zn_heem-v-WMKqu_RKdbUdO1_9t_AZOMhn0 |
CitedBy_id | crossref_primary_10_1093_ptep_ptae105 crossref_primary_10_1002_prop_202400169 crossref_primary_10_1007_JHEP05_2024_040 crossref_primary_10_1002_prop_202400190 crossref_primary_10_1093_ptep_ptaf021 crossref_primary_10_1007_JHEP09_2024_048 |
Cites_doi | 10.1103/PhysRevD.100.045017 10.1007/s11005-015-0791-9 10.1007/JHEP11(2021)208 10.1142/S0129055X07002912 10.1016/0370-2693(81)90205-7 10.1016/0550-3213(86)90155-0 10.1088/1126-6708/2008/03/050 10.1088/1126-6708/2009/10/066 10.1007/JHEP01(2017)108 10.1007/JHEP10(2017)057 10.1007/s00220-014-2027-8 10.1088/1126-6708/2008/07/063 10.1515/9780691213866 10.1088/1126-6708/2004/04/070 10.1007/JHEP05(2017)095 10.4310/ATMP.2006.v10.n4.a1 10.1007/JHEP05(2018)020 10.1016/0550-3213(83)90680-6 10.1063/1.5022890 10.1007/JHEP03(2012)012 10.1007/JHEP11(2015)187 10.1007/BF02097392 10.1090/conm/718/14479 10.1007/JHEP04(2019)143 10.1007/PL00005575 10.1088/1126-6708/2001/07/016 10.1016/0550-3213(93)90388-6 10.1002/prop.201900025 10.1093/ptep/ptab159 10.1016/S0550-3213(02)00495-9 10.1007/JHEP10(2019)119 10.1142/S0217751X97001031 10.1007/s00220-012-1654-1 10.1007/JHEP07(2019)115 10.1088/1126-6708/1999/12/027 10.1007/s11005-013-0615-8 |
ContentType | Journal Article |
Copyright | The Author(s) 2022. Published by Oxford University Press on behalf of the Physical Society of Japan. 2022 The Author(s) 2022. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022. Published by Oxford University Press on behalf of the Physical Society of Japan. 2022 – notice: The Author(s) 2022. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | TOX AAYXX CITATION 3V. 7XB 88I 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ HCIFZ M2P PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U |
DOI | 10.1093/ptep/ptac132 |
DatabaseName | Oxford Journals Open Access Collection CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Collection (ProQuest) Science Database Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 2050-3911 |
ExternalDocumentID | 10_1093_ptep_ptac132 10.1093/ptep/ptac132 |
GroupedDBID | .I3 0R~ 4.4 5VS AAFWJ AAMVS AAPPN AAPXW AAVAP ABEJV ABGNP ABPTD ABXVV ACGFS ADHZD AENEX AENZO AFPKN AFULF AIBLX ALMA_UNASSIGNED_HOLDINGS ALUQC AMNDL BAYMD BTTYL CIDKT D~K EBS EJD ER. GROUPED_DOAJ H13 IAO ISR ITC KQ8 KSI M~E O9- OAWHX OJQWA OK1 PEELM RHF ROL ROX RXO TOX ~D7 88I AAYXX ABUWG AFKRA AZQEC BENPR CCPQU CITATION DWQXO GNUQQ HCIFZ M2P PHGZM PHGZT PIMPY 3V. 7XB 8FK PKEHL PQEST PQQKQ PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c461t-91e22cd75067e76618292d00debfe49114542d3665368a8394399e105f91f5a93 |
IEDL.DBID | BENPR |
ISSN | 2050-3911 |
IngestDate | Mon Jun 30 12:23:32 EDT 2025 Thu Apr 24 23:11:27 EDT 2025 Tue Jul 01 02:09:15 EDT 2025 Fri Jan 31 08:06:30 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | Funded by SCOAP3. SCOAP3 and OUP support the goals of the International Year of Basic Sciences for Sustainable Development This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c461t-91e22cd75067e76618292d00debfe49114542d3665368a8394399e105f91f5a93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/3171491827?pq-origsite=%requestingapplication% |
PQID | 3171491827 |
PQPubID | 7121340 |
ParticipantIDs | proquest_journals_3171491827 crossref_primary_10_1093_ptep_ptac132 crossref_citationtrail_10_1093_ptep_ptac132 oup_primary_10_1093_ptep_ptac132 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-01 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Progress of theoretical and experimental physics |
PublicationYear | 2022 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Crainic (2022111018461830400_bib19) Sen (2022111018461830400_bib27) 2019; 1910 Kajiura (2022111018461830400_bib49_1665145393212) 2002 Kajiura (2022111018461830400_bib18) 2007; 19 Batalin (2022111018461830400_bib2) 1981; 102 Macrelli (2022111018461830400_bib9) 2019; 100 Sen (2022111018461830400_bib31) 1999; 9912 Munster (2022111018461830400_bib17) 2013; 321 Barannikov (2022111018461830400_bib4) 2013; 103 Matsunaga (2022111018461830400_bib12) 2019; 1904 Schnabl (2022111018461830400_bib32) 2006; 10 Costello (2022111018461830400_bib42) Zwiebach (2022111018461830400_bib1) 1993; 390 Schwarz (2022111018461830400_bib6) 1993; 155 Erler (2022111018461830400_bib30) 2009; 0910 Berkovits (2022111018461830400_bib34) 2012; 1203 Matsunaga (2022111018461830400_bib35) 2017; 1705 Matsunaga (2022111018461830400_bib37) 2018; 1805 Albert (2022111018461830400_bib21) Arvanitakis (2022111018461830400_bib40) 2019; 1907 Masuda (2022111018461830400_bib14) 2022; 2022 Barannikov (2022111018461830400_bib48_1665144759370) 2007 Konopka (2022111018461830400_bib39) 2015; 1511 Sen (2022111018461830400_bib11) 2017; 1701 Doubek (2022111018461830400_bib20) (2019) Gwilliam (2022111018461830400_bib43) 2018 Doubek (2022111018461830400_bib5) 2015; 1512 Alexandrov (2022111018461830400_bib7) 1997; 12 Erler (2022111018461830400_bib13) 2021; 2111 Batalin (2022111018461830400_bib46_1665144022106) 1983 Aisaka (2022111018461830400_bib24) 2004; 0404 Kato (2022111018461830400_bib25) 1983; 212 Johnson-Freyd (2022111018461830400_bib44) 2015; 105 Ellwood (2022111018461830400_bib33) 2001; 0107 Pulmann (2022111018461830400_bib22) 2016 Herbst (2022111018461830400_bib16) Erler (2022111018461830400_bib36) 2017; 1710 Munster (2022111018461830400_bib23) 2014; 330 Nakatsu (2022111018461830400_bib41) 2002; 642 Jurco (2022111018461830400_bib45) 2020 Kiermaier (2022111018461830400_bib28) 2008; 0803 Kiermaier (2022111018461830400_bib29) 2008; 0807 Jurco (2022111018461830400_bib10) (2020) Markl (2022111018461830400_bib15) 2001; 221 Henneaux (2022111018461830400_bib3) 1992 Witten (2022111018461830400_bib26) 1986; 268 Jurco (2022111018461830400_bib8) 2019; 67 Braun (2022111018461830400_bib38) 2018; 59 |
References_xml | – volume: 100 start-page: 045017 year: 2019 ident: 2022111018461830400_bib9 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.100.045017 – start-page: 215 volume-title: Commun.Math.Phys. year: (2019) ident: 2022111018461830400_bib20 – volume: 105 start-page: 1605 year: 2015 ident: 2022111018461830400_bib44 publication-title: Lett. Math. Phys. doi: 10.1007/s11005-015-0791-9 – volume: 2111 start-page: 208 year: 2021 ident: 2022111018461830400_bib13 publication-title: J. High Energy Phys. doi: 10.1007/JHEP11(2021)208 – ident: 2022111018461830400_bib42 – volume: 19 start-page: 1 year: 2007 ident: 2022111018461830400_bib18 publication-title: Rev. Math. Phys. doi: 10.1142/S0129055X07002912 – volume: 102 start-page: 27 year: 1981 ident: 2022111018461830400_bib2 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(81)90205-7 – volume: 268 start-page: 253 year: 1986 ident: 2022111018461830400_bib26 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(86)90155-0 – volume: 0803 start-page: 050 year: 2008 ident: 2022111018461830400_bib28 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2008/03/050 – volume: 0910 start-page: 066 year: 2009 ident: 2022111018461830400_bib30 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2009/10/066 – volume: 1701 start-page: 108 year: 2017 ident: 2022111018461830400_bib11 publication-title: J. High Energy Phys. doi: 10.1007/JHEP01(2017)108 – volume: 1710 start-page: 057 year: 2017 ident: 2022111018461830400_bib36 publication-title: J. High Energy Phys. doi: 10.1007/JHEP10(2017)057 – volume: 330 start-page: 1227 year: 2014 ident: 2022111018461830400_bib23 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-014-2027-8 – volume: 0807 start-page: 063 year: 2008 ident: 2022111018461830400_bib29 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2008/07/063 – volume-title: Quantization of Gauge Systems year: 1992 ident: 2022111018461830400_bib3 doi: 10.1515/9780691213866 – volume: 0404 start-page: 070 year: 2004 ident: 2022111018461830400_bib24 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2004/04/070 – year: 2016 ident: 2022111018461830400_bib22 article-title: S-matrix and homological perturbation lemma – volume: 1705 start-page: 095 year: 2017 ident: 2022111018461830400_bib35 publication-title: J. High Energy Phys. doi: 10.1007/JHEP05(2017)095 – start-page: rnm075 volume-title: Int. Math. Res. Not. year: 2007 ident: 2022111018461830400_bib48_1665144759370 – volume: 10 start-page: 433 year: 2006 ident: 2022111018461830400_bib32 publication-title: Adv. Theor. Math. Phys. doi: 10.4310/ATMP.2006.v10.n4.a1 – volume-title: Presentation at the Solvay workshop on “Higher Spin Gauge Theories, Topological Field Theory and Deformation Quantization” year: 2020 ident: 2022111018461830400_bib45 – start-page: 361 volume-title: Nucl. Phys. B year: 2002 ident: 2022111018461830400_bib49_1665145393212 – volume: 1805 start-page: 020 year: 2018 ident: 2022111018461830400_bib37 publication-title: J. High Energy Phys. doi: 10.1007/JHEP05(2018)020 – volume: 212 start-page: 443 year: 1983 ident: 2022111018461830400_bib25 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(83)90680-6 – ident: 2022111018461830400_bib21 – volume: 59 start-page: 063512 year: 2018 ident: 2022111018461830400_bib38 publication-title: J. Math. Phys. doi: 10.1063/1.5022890 – volume: 1203 start-page: 012 year: 2012 ident: 2022111018461830400_bib34 publication-title: J. High Energy Phys. doi: 10.1007/JHEP03(2012)012 – start-page: 2567 volume-title: Phys. Rev. D year: 1983 ident: 2022111018461830400_bib46_1665144022106 – volume: 1511 start-page: 187 year: 2015 ident: 2022111018461830400_bib39 publication-title: J. High Energy Phys. doi: 10.1007/JHEP11(2015)187 – volume: 155 start-page: 249 year: 1993 ident: 2022111018461830400_bib6 publication-title: Commun. Math. Phys. doi: 10.1007/BF02097392 – ident: 2022111018461830400_bib19 – start-page: 175 volume-title: Topology and Quantum Theory in Interaction year: 2018 ident: 2022111018461830400_bib43 doi: 10.1090/conm/718/14479 – volume: 1904 start-page: 143 year: 2019 ident: 2022111018461830400_bib12 publication-title: J. High Energy Phys. doi: 10.1007/JHEP04(2019)143 – volume: 221 start-page: 367 year: 2001 ident: 2022111018461830400_bib15 publication-title: Commun. Math. Phys. doi: 10.1007/PL00005575 – ident: 2022111018461830400_bib16 – volume: 0107 start-page: 016 year: 2001 ident: 2022111018461830400_bib33 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2001/07/016 – start-page: 003 volume-title: JHEP year: (2020) ident: 2022111018461830400_bib10 – volume: 390 start-page: 33 year: 1993 ident: 2022111018461830400_bib1 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(93)90388-6 – volume: 67 start-page: 1900025 year: 2019 ident: 2022111018461830400_bib8 publication-title: Fortschr. Phys. doi: 10.1002/prop.201900025 – volume: 2022 start-page: 013B06 year: 2022 ident: 2022111018461830400_bib14 publication-title: Prog. Theor. Exp. Phys. doi: 10.1093/ptep/ptab159 – volume: 642 start-page: 13 year: 2002 ident: 2022111018461830400_bib41 publication-title: Nucl. Phys. B doi: 10.1016/S0550-3213(02)00495-9 – volume: 1910 start-page: 119 year: 2019 ident: 2022111018461830400_bib27 publication-title: J. High Energy Phys. doi: 10.1007/JHEP10(2019)119 – volume: 12 start-page: 1405 year: 1997 ident: 2022111018461830400_bib7 publication-title: Int. J. Mod. Phys. A doi: 10.1142/S0217751X97001031 – volume: 321 start-page: 769 year: 2013 ident: 2022111018461830400_bib17 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-012-1654-1 – volume: 1907 start-page: 115 year: 2019 ident: 2022111018461830400_bib40 publication-title: J. High Energy Phys. doi: 10.1007/JHEP07(2019)115 – volume: 1512 start-page: 158 year: 2015 ident: 2022111018461830400_bib5 publication-title: J. High Energy Phys. – volume: 9912 start-page: 027 year: 1999 ident: 2022111018461830400_bib31 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/1999/12/027 – volume: 103 start-page: 605 year: 2013 ident: 2022111018461830400_bib4 publication-title: Lett. Math. Phys. doi: 10.1007/s11005-013-0615-8 |
SSID | ssj0001077041 |
Score | 2.3322496 |
Snippet | The perturbative path-integral gives a morphism of the (quantum) A∞ structure intrinsic to each quantum field theory, which we show explicitly on the basis of... |
SourceID | proquest crossref oup |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Algebra Physics Quantum field theory Spacetime |
Title | Perturbative path-integral of string fields and the A∞ structure of the BV master equation |
URI | https://www.proquest.com/docview/3171491827 |
Volume | 2022 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV29TsMwELagFRILPwVEoVQeYEJWEztxkgm1qKhColSoRR2QIsdxWEqaNuUdeAoejifhnDhUHYDFQ3LTnX33nX33HUKXQtN4ccmIEswjTsxtEnHfJhzQAAdAQUXRSPsw5IOJcz91p-bCLTdllZVPLBx1PJf6jrzD9KTuANCwd5MtiJ4apV9XzQiNbVQHF-zDPq_3-sPR0_qWxfI8y7FNxTtk751spTJYhLQZ3YhFG_1tlUMuoszdAdoz8BB3S3seoi2VNtC-gYrYHMS8gXaKyk2ZH6GXkVpC2IgKAm-sBwwTQwExw_ME67Ec6SsuCtVyLNIYA-LD3a-PT1xSx74vlZbTX3vP-E1o4gSsFiUD-DGa3PXHtwNiRiYQ6XB7Ba5LUSpjgAHcUx7EXp8GNLasWEWJAvXZjuvQmIElGPcFgCOdjijAWElgJ64I2AmqpfNUnSIcM9eXSlMHQOIa0cR3XZ6Af3N0FmIr1UTXlfJCafjE9ViLWVi-a7NQqzo0qm6iqx_prOTR-EUOgx3-EWlVRgrNgcvD9fY4-_v3OdqluoOhaCdsoRqoWl0ArlhFbbN52kVeDuv4cfoNu0fRLw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsQwDLXQIAQXdsRODnBCFW3Spp0DQqwathFCgDgglS4uF-gMdBDiD_gKPoGP4kuw2xTEAThx6aG1lMpx7JfEfgZYjpjGSyfKwkj5lptqx4p14Fia0IAmQCGjspD2uK1b5-7BpXfZB291LQynVdY-sXTUaSfhM_I1xZ26m4SG_Y3uvcVdo_h2tW6hUZnFIT4_0ZatWN_fofldkXJv92y7ZZmuAlbiaqdHqxulTFKKlNpHn8JTIJsyte0U4wxpBMf1XJkq-lmlg4jwAyN2JBiSNZ3Mi5h8iVx-v8sVrQ3o39ptn5x-nerYvm-7jsmwt5tqrdvDLj2ixFHyW-z7Vk9XB4Ayqu2NwrCBo2Kzsp8x6MN8HEYMNBVm4RfjMFBmiibFBFyd4AOFqbgkDBfc0NgylBO3opMJbgOS34gyMa4QUZ4KQphi8_3lVVRUtY8PyHL8dutC3EVM1CDwvmIcn4Tzf1HmFDTyTo7TIFLlBQkyVQFtlGOZBZ6nM_KnLu96HMQZWK2VFyaGv5zbaNyG1T26ClnVoVH1DKx8Sncr3o4f5ATNwx8i8_UkhWaBF-GXOc7-_nkJBltnx0fh0X77cA6GJFdPlKWM89AgteMCYZpevGgMScD1f9vuB7B8CRQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Perturbative+path-integral+of+string+fields+and+the+A%E2%88%9E+structure+of+the+BV+master+equation&rft.jtitle=Progress+of+theoretical+and+experimental+physics&rft.au=Masuda%2C+Toru&rft.au=Matsunaga%2C+Hiroaki&rft.date=2022-11-01&rft.pub=Oxford+University+Press&rft.eissn=2050-3911&rft.volume=2022&rft.issue=11&rft_id=info:doi/10.1093%2Fptep%2Fptac132&rft.externalDocID=10.1093%2Fptep%2Fptac132 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-3911&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-3911&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-3911&client=summon |