Perturbative path-integral of string fields and the A∞ structure of the BV master equation
The perturbative path-integral gives a morphism of the (quantum) A∞ structure intrinsic to each quantum field theory, which we show explicitly on the basis of the homological perturbation. As is known, in the Batalin–Vilkovisky (BV) formalism, any effective action also solves the BV master equation,...
Saved in:
Published in | Progress of theoretical and experimental physics Vol. 2022; no. 11 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford
Oxford University Press
01.11.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2050-3911 2050-3911 |
DOI | 10.1093/ptep/ptac132 |
Cover
Summary: | The perturbative path-integral gives a morphism of the (quantum) A∞ structure intrinsic to each quantum field theory, which we show explicitly on the basis of the homological perturbation. As is known, in the Batalin–Vilkovisky (BV) formalism, any effective action also solves the BV master equation, which implies that the path-integral can be understood as a morphism of the BV differential. Since each solution of the BV master equation is in one-to-one correspondence with a quantum A∞ structure, the path-integral preserves this intrinsic A∞ structure of quantum field theory, where A∞ reduces to L∞ whenever multiplications of space-time fields are graded commutative. We apply these ideas to string-field theory and (re-)derive some quantities based on the perturbative path-integral, such as effective theories with finite α′, reduction of gauge and unphysical degrees, the S-matrix, and gauge-invariant observables. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2050-3911 2050-3911 |
DOI: | 10.1093/ptep/ptac132 |