Design of omniphobic interfaces for membrane distillation – A review
Membrane distillation (MD) has a great potential in treating high salinity industrial wastewater due to its unique characteristics. Nevertheless, the implementation of MD for industrial wastewater reclamation must be conducted with precaution because low-surface-tension contaminates in feed solution...
Saved in:
Published in | Water research (Oxford) Vol. 162; pp. 64 - 77 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.10.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0043-1354 1879-2448 1879-2448 |
DOI | 10.1016/j.watres.2019.06.056 |
Cover
Loading…
Abstract | Membrane distillation (MD) has a great potential in treating high salinity industrial wastewater due to its unique characteristics. Nevertheless, the implementation of MD for industrial wastewater reclamation must be conducted with precaution because low-surface-tension contaminates in feed solutions may easily wet the membranes. In recent years, omniphobic membranes that exhibit strong repellence towards liquids with a wide range of surface tensions have been proposed as a promising solution to deal with the wetting problem. In this paper, we aim to provide a comprehensive review of omniphobic interfaces and illustrate their fundamental working principles, innovative design approaches and novel applications on membrane distillation. The review may provide insights in designing stable solid-liquid-vapor interfaces and serve as a guidance for the development of robust anti-wetting membranes for industrial wastewater reclamation via membrane distillation.
[Display omitted]
•Fundamentals of designing robust omniphobic surfaces.•Novel fabrication methods to create re-entrant structures and low surface energy coatings.•A comprehensive summary of omniphobic membranes for membrane distillation.•Challenges and perspectives of omniphobic membranes for industrial wastewater treatment. |
---|---|
AbstractList | Membrane distillation (MD) has a great potential in treating high salinity industrial wastewater due to its unique characteristics. Nevertheless, the implementation of MD for industrial wastewater reclamation must be conducted with precaution because low-surface-tension contaminates in feed solutions may easily wet the membranes. In recent years, omniphobic membranes that exhibit strong repellence towards liquids with a wide range of surface tensions have been proposed as a promising solution to deal with the wetting problem. In this paper, we aim to provide a comprehensive review of omniphobic interfaces and illustrate their fundamental working principles, innovative design approaches and novel applications on membrane distillation. The review may provide insights in designing stable solid-liquid-vapor interfaces and serve as a guidance for the development of robust anti-wetting membranes for industrial wastewater reclamation via membrane distillation.
[Display omitted]
•Fundamentals of designing robust omniphobic surfaces.•Novel fabrication methods to create re-entrant structures and low surface energy coatings.•A comprehensive summary of omniphobic membranes for membrane distillation.•Challenges and perspectives of omniphobic membranes for industrial wastewater treatment. Membrane distillation (MD) has a great potential in treating high salinity industrial wastewater due to its unique characteristics. Nevertheless, the implementation of MD for industrial wastewater reclamation must be conducted with precaution because low-surface-tension contaminates in feed solutions may easily wet the membranes. In recent years, omniphobic membranes that exhibit strong repellence towards liquids with a wide range of surface tensions have been proposed as a promising solution to deal with the wetting problem. In this paper, we aim to provide a comprehensive review of omniphobic interfaces and illustrate their fundamental working principles, innovative design approaches and novel applications on membrane distillation. The review may provide insights in designing stable solid-liquid-vapor interfaces and serve as a guidance for the development of robust anti-wetting membranes for industrial wastewater reclamation via membrane distillation. Membrane distillation (MD) has a great potential in treating high salinity industrial wastewater due to its unique characteristics. Nevertheless, the implementation of MD for industrial wastewater reclamation must be conducted with precaution because low-surface-tension contaminates in feed solutions may easily wet the membranes. In recent years, omniphobic membranes that exhibit strong repellence towards liquids with a wide range of surface tensions have been proposed as a promising solution to deal with the wetting problem. In this paper, we aim to provide a comprehensive review of omniphobic interfaces and illustrate their fundamental working principles, innovative design approaches and novel applications on membrane distillation. The review may provide insights in designing stable solid-liquid-vapor interfaces and serve as a guidance for the development of robust anti-wetting membranes for industrial wastewater reclamation via membrane distillation.Membrane distillation (MD) has a great potential in treating high salinity industrial wastewater due to its unique characteristics. Nevertheless, the implementation of MD for industrial wastewater reclamation must be conducted with precaution because low-surface-tension contaminates in feed solutions may easily wet the membranes. In recent years, omniphobic membranes that exhibit strong repellence towards liquids with a wide range of surface tensions have been proposed as a promising solution to deal with the wetting problem. In this paper, we aim to provide a comprehensive review of omniphobic interfaces and illustrate their fundamental working principles, innovative design approaches and novel applications on membrane distillation. The review may provide insights in designing stable solid-liquid-vapor interfaces and serve as a guidance for the development of robust anti-wetting membranes for industrial wastewater reclamation via membrane distillation. |
Author | Chen, Yuanmiaoliang Chung, Tai-Shung Lu, Kang Jia |
Author_xml | – sequence: 1 givenname: Kang Jia surname: Lu fullname: Lu, Kang Jia organization: Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore – sequence: 2 givenname: Yuanmiaoliang surname: Chen fullname: Chen, Yuanmiaoliang organization: NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore, 117456, Singapore – sequence: 3 givenname: Tai-Shung orcidid: 0000-0003-3704-8609 surname: Chung fullname: Chung, Tai-Shung email: chencts@nus.edu.sg organization: Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31255782$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkb1OHDEUha2IKCwkbxBFLtPMxH_jsSkiIQIkEhIN1JbtuQNe7diL7QXR8Q55Q56EgYUmRahu852jq_PtoZ2YIiD0lZKWEip_LNs7WzOUlhGqWyJb0skPaEFVrxsmhNpBC0IEbyjvxC7aK2VJCGGM609ol1PWdb1iC3TyC0q4ijiNOE0xrK-TCx6HWCGP1kPBY8p4gsllGwEPodSwWtkaUsSPD3_xIc5wG-DuM_o42lWBL693H12eHF8c_W7Ozk__HB2eNV5IWpvedqpTDgYBhDo2UDb0xFlmpZOiV95boXuQEkBrZYW1Y8cV9RZ6R4XjhO-j79vedU43GyjVTKF4mF-KkDbFMME1V4xR-T7KOiKZ5FrP6LdXdOMmGMw6h8nme_M20wwcbAGfUykZRuNDfVmhZhtWhhLz7MQszdaJeXZiiDSzkzks_gm_9b8T-7mNwbznvHE2xQeIHoaQwVczpPD_gieQeqhp |
CitedBy_id | crossref_primary_10_1002_adsu_202300461 crossref_primary_10_1016_j_memsci_2023_121710 crossref_primary_10_1016_j_enconman_2023_117328 crossref_primary_10_1021_acs_langmuir_4c03024 crossref_primary_10_1016_j_jece_2024_114998 crossref_primary_10_1016_j_cej_2021_133165 crossref_primary_10_1016_j_chemosphere_2022_136114 crossref_primary_10_1016_j_resconrec_2022_106646 crossref_primary_10_1002_adma_202307950 crossref_primary_10_1016_j_seppur_2024_128704 crossref_primary_10_1038_s41467_024_45414_9 crossref_primary_10_1016_j_desal_2023_116434 crossref_primary_10_1016_j_seppur_2022_122036 crossref_primary_10_1016_j_memsci_2020_118031 crossref_primary_10_1016_j_memsci_2020_118150 crossref_primary_10_1016_j_memsci_2021_120198 crossref_primary_10_1021_acsestengg_0c00025 crossref_primary_10_1016_j_pmatsci_2024_101376 crossref_primary_10_1007_s00339_019_3245_x crossref_primary_10_1016_j_desal_2022_115639 crossref_primary_10_1021_acs_est_1c01269 crossref_primary_10_1007_s13762_020_02894_8 crossref_primary_10_1016_j_desal_2023_116544 crossref_primary_10_1016_j_desal_2024_118122 crossref_primary_10_1016_j_seppur_2021_119494 crossref_primary_10_1021_acsami_0c21649 crossref_primary_10_1038_s44221_023_00174_6 crossref_primary_10_1016_j_memsci_2023_122106 crossref_primary_10_1080_09506608_2022_2047420 crossref_primary_10_1016_j_jece_2024_113204 crossref_primary_10_1016_j_memsci_2024_122794 crossref_primary_10_1016_j_desal_2022_115964 crossref_primary_10_1016_j_desal_2020_114550 crossref_primary_10_1016_j_enconman_2022_115880 crossref_primary_10_1021_acsestwater_3c00597 crossref_primary_10_1016_j_apenergy_2024_122805 crossref_primary_10_1016_j_desal_2020_114312 crossref_primary_10_1016_j_desal_2024_118011 crossref_primary_10_3390_w13243480 crossref_primary_10_1038_s41467_024_52108_9 crossref_primary_10_3390_membranes11030164 crossref_primary_10_1016_j_desal_2021_115314 crossref_primary_10_1016_j_jece_2022_107631 crossref_primary_10_1021_acs_est_1c05090 crossref_primary_10_1016_j_desal_2020_114561 crossref_primary_10_1016_j_jece_2022_109018 crossref_primary_10_1016_j_jwpe_2020_101789 crossref_primary_10_1016_j_jwpe_2025_107272 crossref_primary_10_1080_87559129_2024_2374842 crossref_primary_10_1016_j_desal_2023_116443 crossref_primary_10_1016_j_memsci_2021_119433 crossref_primary_10_1016_j_desal_2025_118701 crossref_primary_10_1016_j_memsci_2021_119434 crossref_primary_10_1016_j_memsci_2020_118845 crossref_primary_10_1021_acsami_0c03577 crossref_primary_10_1016_j_memsci_2020_118226 crossref_primary_10_3390_membranes12010081 crossref_primary_10_1016_j_memsci_2022_120267 crossref_primary_10_1038_s41563_021_01052_w crossref_primary_10_1039_D3GC03377E crossref_primary_10_1021_acsami_3c02781 crossref_primary_10_1016_j_chemosphere_2023_140923 crossref_primary_10_3390_w13070980 crossref_primary_10_1016_j_memsci_2023_122294 crossref_primary_10_1016_j_watres_2024_122021 crossref_primary_10_1016_j_desal_2021_115268 crossref_primary_10_1007_s40726_023_00249_8 crossref_primary_10_2139_ssrn_4105376 crossref_primary_10_1016_j_chemosphere_2022_135629 crossref_primary_10_1016_j_jwpe_2025_107296 crossref_primary_10_1021_acs_iecr_2c00318 crossref_primary_10_1016_j_watres_2024_121605 crossref_primary_10_1021_acsami_0c06902 crossref_primary_10_1016_j_memsci_2020_117819 crossref_primary_10_1016_j_desal_2020_114864 crossref_primary_10_1016_j_desal_2021_115498 crossref_primary_10_1016_j_memsci_2022_120926 crossref_primary_10_1021_acsenvironau_4c00134 crossref_primary_10_1016_j_seppur_2021_119058 crossref_primary_10_1016_j_desal_2021_115006 crossref_primary_10_1016_j_desal_2023_116936 crossref_primary_10_1016_j_jece_2023_109624 crossref_primary_10_1021_acs_estlett_2c00825 crossref_primary_10_1007_s10008_023_05510_0 crossref_primary_10_3390_membranes11060437 crossref_primary_10_1016_j_memsci_2020_118918 crossref_primary_10_1039_C9EW01134J crossref_primary_10_1016_j_chemosphere_2021_132610 crossref_primary_10_1016_j_desal_2021_115241 crossref_primary_10_1016_j_desal_2022_116058 crossref_primary_10_1016_j_memsci_2020_118915 crossref_primary_10_1016_j_memsci_2020_118913 crossref_primary_10_1016_j_memsci_2021_119862 crossref_primary_10_1021_acs_est_1c02687 crossref_primary_10_1016_j_memsci_2020_118137 crossref_primary_10_1016_j_memsci_2022_121207 crossref_primary_10_1016_j_desal_2023_116373 crossref_primary_10_1016_j_isci_2023_106464 crossref_primary_10_1016_j_aej_2022_03_044 crossref_primary_10_1016_j_watres_2022_118091 crossref_primary_10_1002_adfm_202211113 crossref_primary_10_1016_j_jwpe_2024_105037 crossref_primary_10_1016_j_jwpe_2024_105399 crossref_primary_10_1016_j_memsci_2024_123553 crossref_primary_10_1016_j_jwpe_2022_102634 crossref_primary_10_1016_j_csite_2023_103411 crossref_primary_10_1016_j_ceja_2023_100486 crossref_primary_10_1016_j_memsci_2020_118666 crossref_primary_10_1021_acsestengg_3c00010 crossref_primary_10_1038_s41545_024_00342_5 crossref_primary_10_4236_gep_2024_1211015 crossref_primary_10_1016_j_desal_2024_118060 crossref_primary_10_1016_j_memsci_2024_123343 crossref_primary_10_1051_e3sconf_202129405002 crossref_primary_10_1016_j_memsci_2024_122494 crossref_primary_10_1016_j_jwpe_2021_102528 crossref_primary_10_1016_j_ces_2020_116276 crossref_primary_10_3390_membranes13010015 crossref_primary_10_1016_j_desal_2021_115187 crossref_primary_10_1016_j_resconrec_2022_106368 crossref_primary_10_1016_j_resconrec_2020_105273 crossref_primary_10_1016_j_desal_2024_117886 crossref_primary_10_1016_j_pmatsci_2024_101309 crossref_primary_10_1016_j_memsci_2022_120858 crossref_primary_10_1016_j_memsci_2020_118676 crossref_primary_10_1016_j_desal_2023_116396 crossref_primary_10_1016_j_porgcoat_2023_107590 crossref_primary_10_1021_acsami_1c12775 crossref_primary_10_1016_j_resconrec_2023_106999 crossref_primary_10_1016_j_colsuc_2024_100032 crossref_primary_10_2139_ssrn_3961947 crossref_primary_10_2139_ssrn_4162752 crossref_primary_10_1007_s42247_020_00152_8 crossref_primary_10_1016_j_memsci_2019_117572 crossref_primary_10_1016_j_desal_2024_117539 crossref_primary_10_1016_j_desal_2023_116949 crossref_primary_10_1016_j_memlet_2024_100082 crossref_primary_10_1038_s41545_020_0078_2 crossref_primary_10_1016_j_watres_2024_122176 crossref_primary_10_2139_ssrn_4141397 crossref_primary_10_1002_admt_202201426 crossref_primary_10_1021_acs_est_3c09320 crossref_primary_10_1016_j_desal_2022_116205 crossref_primary_10_1016_j_desal_2022_116323 crossref_primary_10_1016_j_mtener_2020_100622 crossref_primary_10_1016_j_jece_2021_105818 crossref_primary_10_1021_acs_energyfuels_3c04418 crossref_primary_10_1016_j_desal_2024_117547 crossref_primary_10_1016_j_desal_2022_115563 crossref_primary_10_1016_j_desal_2021_115046 crossref_primary_10_1016_j_desal_2021_115168 crossref_primary_10_1016_j_psep_2022_06_044 crossref_primary_10_1016_j_memsci_2021_119824 crossref_primary_10_1007_s42765_022_00193_0 crossref_primary_10_1016_j_memsci_2023_121546 crossref_primary_10_1016_j_seppur_2025_132067 crossref_primary_10_1016_j_watres_2021_117103 crossref_primary_10_3390_membranes10070158 crossref_primary_10_1021_acsami_2c01499 crossref_primary_10_1016_j_jece_2024_112746 crossref_primary_10_1016_j_memsci_2025_123766 crossref_primary_10_1016_j_desal_2021_114986 crossref_primary_10_1016_j_desal_2022_115579 crossref_primary_10_1016_j_seppur_2022_121807 crossref_primary_10_1016_j_seppur_2023_123165 crossref_primary_10_1016_j_rser_2020_110381 crossref_primary_10_1016_j_desal_2023_116722 crossref_primary_10_1021_acs_est_1c04443 crossref_primary_10_1016_j_applthermaleng_2022_118279 crossref_primary_10_1016_j_memsci_2020_119038 crossref_primary_10_1016_j_desal_2023_117177 crossref_primary_10_1080_10643389_2021_1877032 crossref_primary_10_1515_revce_2020_0073 crossref_primary_10_1016_j_cej_2022_136112 crossref_primary_10_1016_j_memsci_2022_120423 crossref_primary_10_1016_j_jclepro_2021_128485 crossref_primary_10_1021_acs_est_2c07880 crossref_primary_10_1016_j_desal_2022_115705 crossref_primary_10_1039_D0TA10280F crossref_primary_10_1016_j_desal_2020_114338 crossref_primary_10_1016_j_cherd_2020_09_030 crossref_primary_10_1016_j_jtice_2022_104593 crossref_primary_10_1021_acsami_3c08934 crossref_primary_10_1016_j_memsci_2020_118078 crossref_primary_10_1016_j_memsci_2020_118075 crossref_primary_10_1016_j_psep_2024_03_058 crossref_primary_10_1016_j_memsci_2022_120770 crossref_primary_10_1016_j_seppur_2022_121380 crossref_primary_10_1016_j_jece_2024_113214 crossref_primary_10_1016_j_watres_2020_115600 crossref_primary_10_1007_s11270_024_07622_3 crossref_primary_10_1002_advs_202300598 crossref_primary_10_1007_s40430_019_1995_1 crossref_primary_10_1016_j_memsci_2020_118505 crossref_primary_10_3390_membranes11080552 crossref_primary_10_1016_j_surfin_2024_104035 crossref_primary_10_1016_j_memsci_2022_120404 crossref_primary_10_1016_j_desal_2023_117195 crossref_primary_10_1016_j_enconman_2024_118636 crossref_primary_10_1016_j_jwpe_2022_103323 crossref_primary_10_1021_acs_est_4c08343 crossref_primary_10_1016_j_dwt_2024_100184 crossref_primary_10_1016_j_memsci_2023_121582 crossref_primary_10_1016_j_cej_2021_132973 crossref_primary_10_1016_j_desal_2022_115925 crossref_primary_10_1016_j_desal_2023_116895 crossref_primary_10_2166_ws_2019_164 crossref_primary_10_1016_j_chemosphere_2021_132212 crossref_primary_10_1016_j_cis_2021_102362 crossref_primary_10_1016_j_cclet_2021_02_035 crossref_primary_10_1021_acs_iecr_1c04502 crossref_primary_10_3390_membranes14070152 crossref_primary_10_1016_j_watres_2023_120511 crossref_primary_10_1016_j_desal_2022_115818 crossref_primary_10_1016_j_watres_2023_120513 crossref_primary_10_1021_acs_est_0c05454 crossref_primary_10_1016_j_memsci_2022_121289 crossref_primary_10_1021_acs_est_0c04242 crossref_primary_10_1016_j_desal_2021_115512 crossref_primary_10_3390_membranes14040081 crossref_primary_10_1016_j_susmat_2023_e00780 crossref_primary_10_1016_j_desal_2024_118448 crossref_primary_10_1016_j_pmatsci_2021_100843 crossref_primary_10_1016_j_desal_2023_116885 crossref_primary_10_3390_membranes11120934 |
Cites_doi | 10.1119/1.3619866 10.1557/mrs2008.161 10.1021/ez500267p 10.1016/j.memsci.2014.09.042 10.1016/j.memsci.2012.03.031 10.1016/j.memsci.2015.01.059 10.1021/es5017262 10.1016/0011-9164(67)80014-6 10.1002/anie.201108800 10.1002/anie.201509385 10.1126/science.1057887 10.1016/j.watres.2016.07.060 10.1038/s41467-018-05895-x 10.1021/la903489r 10.1016/j.memsci.2016.07.019 10.1002/adma.200501131 10.1016/j.polymer.2010.08.022 10.1002/adma.201305408 10.1021/ma0511189 10.1021/acs.est.7b02848 10.1021/acs.est.5b04351 10.1016/j.watres.2018.03.058 10.1021/acs.est.7b05450 10.1016/j.apsusc.2018.04.180 10.1016/j.memsci.2016.04.058 10.1016/j.matlet.2018.05.126 10.1021/ja407896m 10.1002/anie.199710111 10.1016/j.apcbee.2013.05.028 10.1073/pnas.0804872105 10.1016/j.memsci.2018.03.041 10.1021/acs.est.6b02316 10.1021/ie50320a024 10.1039/tf9444000546 10.1016/j.desal.2014.06.031 10.1016/j.memsci.2018.07.011 10.1016/j.procir.2014.07.161 10.1016/j.watres.2013.12.044 10.1039/C2CC37576A 10.1016/0011-9164(91)85096-D 10.1016/j.desal.2010.05.012 10.3390/w5010094 10.1038/am.2014.34 10.1016/j.desal.2014.10.028 10.1021/acsami.6b02419 10.1016/j.jcis.2008.09.068 10.1016/j.seppur.2010.05.016 10.1080/01694243.2019.1599217 10.1016/j.memsci.2017.01.063 10.1126/science.1148326 10.1039/c2jm15987b 10.1038/am.2012.66 10.1007/s10040-009-0565-5 10.1016/j.seppur.2018.05.035 10.1038/ncomms15823 10.1016/S0376-7388(96)00236-0 10.1016/j.memsci.2014.01.013 10.1016/j.desal.2017.11.029 10.1021/acs.est.8b00766 10.1039/C5CS00438A 10.1021/acsami.8b00521 10.1016/j.memsci.2005.04.049 10.1016/j.memsci.2018.12.079 10.1016/j.desal.2012.06.014 10.1016/j.desal.2017.03.012 10.1016/j.memsci.2005.03.051 10.1021/acsami.5b11315 10.1016/j.memsci.2012.06.004 10.1021/acs.est.6b03882 10.1038/nature10447 10.1002/adma.201202554 10.1016/j.watres.2017.01.022 10.1039/C8EE00291F |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright © 2019 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright © 2019 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.watres.2019.06.056 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2448 |
EndPage | 77 |
ExternalDocumentID | 31255782 10_1016_j_watres_2019_06_056 S004313541930569X |
Genre | Journal Article Review |
GroupedDBID | --- --K --M -DZ -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMC IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SCU SDF SDG SDP SES SPC SPCBC SSE SSJ SSZ T5K TAE TN5 TWZ WH7 XPP ZCA ZMT ~02 ~G- ~KM .55 186 29R 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACKIV ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HMA HVGLF HZ~ H~9 MVM OHT R2- SEN SEP SEW SSH WUQ X7M XOL YHZ YV5 ZXP ZY4 ~A~ NPM 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c461t-7a5858bed4e01b2d12d70ba2a6b6478cca497e66ee998a4aaf5381cae7b14b303 |
IEDL.DBID | .~1 |
ISSN | 0043-1354 1879-2448 |
IngestDate | Mon Jul 21 09:18:48 EDT 2025 Fri Jul 11 03:34:59 EDT 2025 Thu Apr 03 07:02:59 EDT 2025 Tue Jul 01 01:20:57 EDT 2025 Thu Apr 24 23:10:10 EDT 2025 Fri Feb 23 02:23:35 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Omniphobic interfaces Anti-wetting Re-entrant structure Membrane distillation Industrial wastewater treatment Low surface energy |
Language | English |
License | Copyright © 2019 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c461t-7a5858bed4e01b2d12d70ba2a6b6478cca497e66ee998a4aaf5381cae7b14b303 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-3704-8609 |
PMID | 31255782 |
PQID | 2250626399 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2439382216 proquest_miscellaneous_2250626399 pubmed_primary_31255782 crossref_citationtrail_10_1016_j_watres_2019_06_056 crossref_primary_10_1016_j_watres_2019_06_056 elsevier_sciencedirect_doi_10_1016_j_watres_2019_06_056 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-01 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Water research (Oxford) |
PublicationTitleAlternate | Water Res |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Gryta (bib22) 2005; 265 Ma, Mao, Gupta, Gleason, Rutledge (bib46) 2005; 38 Hilal, Kim, Somerfield (bib27) 2011; 273 Huang, Wang, Jin, Lin (bib29) 2017; 51 Lu, Zuo, Chung (bib45) 2016; 514 Zhu, Kong, Tang, Wang (bib80) 2017; 8 Li, Cai, Chung (bib41) 2014; 48 Kota, Li, Mabry, Tuteja (bib36) 2012; 24 Siyal, Lee, Park, Khan, Kim (bib54) 2019; 243 Calabro, Drioli, Matera (bib6) 1991; 83 Camacho, Dumée, Zhang, Li, Duke, Gomez, Gray (bib7) 2013; 5 Cassie, Baxter (bib8) 1944 Wenzel (bib70) 1936; 28 Devi, Smitha, Sridhar, Aminabhavi (bib17) 2005; 262 Sivakumar, Ramezanianpour, O'Halloran (bib53) 2013; 5 Boo, Lee, Elimelech (bib4) 2016; 50 Bunz (bib5) 2006; 18 Sorvali, Vuori, Pudas, Haapanen, Mahlberg, Ronkainen, Honkanen, Valden, Mäkelä (bib56) 2018; 29 Tsujii, Yamamoto, Onda, Shibuichi (bib60) 1997; 36 Zheng, Chen, Wang, Song, Li, He (bib79) 2018; 555 Henderyckx (bib23) 1967; 3 Lu, Su, Cao, Ma, Duan, Chang, Li (bib43) 2018; 228 Feng, Zhong, Zhang, Wang, Xing (bib21) 2016; 8 Boo, Lee, Elimelech (bib3) 2016; 50 Deshmukh, Boo, Karanikola, Lin, Straub, Tong, Warsinger, Elimelech (bib16) 2018; 11 Tuteja, Choi, McKinley, Cohen, Rubner (bib63) 2008; 33 Israelachvili (bib31) 2011 Khaing, Li, Li, Wai, Wong (bib33) 2010; 74 Kota, Choi, Tuteja (bib34) 2013; 6 Woo, Chen, Tijing, Phuntsho, He, Choi, Kim, Shon (bib72) 2017; 529 Wong, Kang, Tang, Smythe, Hatton, Grinthal, Aizenberg (bib71) 2011; 477 Lawson, Lloyd (bib37) 1997; 124 Sophocleous (bib55) 2010; 18 Wang, Lin (bib67) 2017; 112 Warsinger, Swaminathan, Guillen-Burrieza, Arafat, Lienhard, H (bib68) 2015; 356 Razmjou, Arifin, Dong, Mansouri, Chen (bib50) 2012; 415–416 Domingues, Arunachalam, Nauruzbayeva, Mishra (bib18) 2018; 9 Ma, Higaki, Otsuka, Takahara (bib47) 2013; 49 Deng, Ye, Li, Li, Zhang, Wang, Zhu, Hsiao (bib15) 2018; 206 Lu, Zuo, Chang, Kuan, Chung (bib44) 2018; 52 Zhang, Wang, Fu, Chung (bib77) 2014; 52 Chen, Huang, Chen, Chen, Hsu, Tsai, Tung (bib10) 2018; 428 Yang, Zhang, Xu, Zhu, Men, Zhou (bib76) 2012; 22 Salimi (bib52) 2019; 33 Cheng, Rodak (bib13) 2010; 86 Tijing, Woo, Choi, Lee, Kim, Shon (bib59) 2015; 475 Chhatre, Choi, Tuteja, Park, Mabry, McKinley, Cohen (bib14) 2010; 26 Tan, Reithofer, Chen, Menon, Hor, Xu, Chin (bib58) 2013; 135 Wang, Hou, Wang, Wang, Tian, Liang (bib64) 2018; 450 Woo, Kim, Yao, Tijing, Choi, Lee, Kim, Shon (bib73) 2018; 52 El-Abbassi, Hafidi, Khayet, García-Payo (bib20) 2013; 323 Li, Guo, Xu, Li, Pan, Du, Cheng (bib40) 2019; 574 Rezaei, Warsinger, Lienhard, H, Duke, Matsuura, Samhaber (bib51) 2018; 139 Zhao, Zuo, Lu, Chung (bib78) 2017; 413 Lee, An, He, Woo, Shon (bib38) 2016; 520 Tuteja, Choi, Ma, Mabry, Mazzella, Rutledge, McKinley, Cohen (bib61) 2007; 318 Chen, Li, Zhao, Zheng (bib11) 2010; 51 Hensel, Neinhuis, Werner (bib26) 2016; 45 Drioli, Ali, Macedonio (bib19) 2015; 356 Cheng, Urata, Yagihashi, Hozumi (bib12) 2012; 51 An, Guo, Jeong, Lee, Tabatabai, Leiknes (bib1) 2016; 103 Wang, McCarthy (bib65) 2016; 55 Wang, Elimelech, Lin (bib66) 2016; 50 Hensel, Finn, Helbig, Braun, Neinhuis, Fischer, Werner (bib24) 2014; 26 Boban, Golovin, Tobelmann, Gupte, Mabry, Tuteja (bib2) 2018; 10 Hensel, Helbig, Aland, Voigt, Neinhuis, Werner (bib25) 2013; 5 Srinivasarao, Collings, Philips, Patel (bib57) 2001; 292 Yang, Tian, Xie, Li, Zhao, He, Liu (bib75) 2015; 482 Howarter, Youngblood (bib28) 2009; 329 Tuteja, Choi, Mabry, McKinley, Cohen (bib62) 2008; 105 Wei, Zhao, Li, Wang, He, He, Jiang (bib69) 2012; 407–408 Hussain, Minier-Matar, Janson, Adham (bib30) 2015 Mokhtar, Lau, Ismail, Veerasamy (bib49) 2015; 26 Lin, Nejati, Boo, Hu, Osuji, Elimelech (bib42) 2014; 1 Kota, Kwon, Tuteja (bib35) 2014; 6 Kadi, Janajreh, Hashaikeh, Ahmed (bib32) 2019; 3 Marchand, Weijs, Snoeijer, Andreotti (bib48) 2012; 79 Yang, Li, Gilron, Kong, Yin, Oren, Linder, He (bib74) 2014; 456 Chen, Chen, Huang, Chen, Su, Hsu, Tsai, Tung (bib9) 2018; 564 Lee, Boo, Ryu, Taylor, Elimelech (bib39) 2016; 8 Kota (10.1016/j.watres.2019.06.056_bib34) 2013; 6 Chen (10.1016/j.watres.2019.06.056_bib10) 2018; 428 Devi (10.1016/j.watres.2019.06.056_bib17) 2005; 262 Lee (10.1016/j.watres.2019.06.056_bib39) 2016; 8 Marchand (10.1016/j.watres.2019.06.056_bib48) 2012; 79 Woo (10.1016/j.watres.2019.06.056_bib72) 2017; 529 El-Abbassi (10.1016/j.watres.2019.06.056_bib20) 2013; 323 Huang (10.1016/j.watres.2019.06.056_bib29) 2017; 51 Zheng (10.1016/j.watres.2019.06.056_bib79) 2018; 555 Hilal (10.1016/j.watres.2019.06.056_bib27) 2011; 273 Rezaei (10.1016/j.watres.2019.06.056_bib51) 2018; 139 Ma (10.1016/j.watres.2019.06.056_bib47) 2013; 49 Woo (10.1016/j.watres.2019.06.056_bib73) 2018; 52 Bunz (10.1016/j.watres.2019.06.056_bib5) 2006; 18 Cheng (10.1016/j.watres.2019.06.056_bib12) 2012; 51 Zhu (10.1016/j.watres.2019.06.056_bib80) 2017; 8 Razmjou (10.1016/j.watres.2019.06.056_bib50) 2012; 415–416 Kota (10.1016/j.watres.2019.06.056_bib36) 2012; 24 Wang (10.1016/j.watres.2019.06.056_bib67) 2017; 112 Tan (10.1016/j.watres.2019.06.056_bib58) 2013; 135 Tijing (10.1016/j.watres.2019.06.056_bib59) 2015; 475 Yang (10.1016/j.watres.2019.06.056_bib75) 2015; 482 Lu (10.1016/j.watres.2019.06.056_bib43) 2018; 228 Hensel (10.1016/j.watres.2019.06.056_bib25) 2013; 5 An (10.1016/j.watres.2019.06.056_bib1) 2016; 103 Salimi (10.1016/j.watres.2019.06.056_bib52) 2019; 33 Zhao (10.1016/j.watres.2019.06.056_bib78) 2017; 413 Hensel (10.1016/j.watres.2019.06.056_bib26) 2016; 45 Li (10.1016/j.watres.2019.06.056_bib40) 2019; 574 Tuteja (10.1016/j.watres.2019.06.056_bib62) 2008; 105 Wenzel (10.1016/j.watres.2019.06.056_bib70) 1936; 28 Boban (10.1016/j.watres.2019.06.056_bib2) 2018; 10 Warsinger (10.1016/j.watres.2019.06.056_bib68) 2015; 356 Ma (10.1016/j.watres.2019.06.056_bib46) 2005; 38 Wang (10.1016/j.watres.2019.06.056_bib65) 2016; 55 Mokhtar (10.1016/j.watres.2019.06.056_bib49) 2015; 26 Wang (10.1016/j.watres.2019.06.056_bib64) 2018; 450 Calabro (10.1016/j.watres.2019.06.056_bib6) 1991; 83 Lawson (10.1016/j.watres.2019.06.056_bib37) 1997; 124 Camacho (10.1016/j.watres.2019.06.056_bib7) 2013; 5 Chhatre (10.1016/j.watres.2019.06.056_bib14) 2010; 26 Wei (10.1016/j.watres.2019.06.056_bib69) 2012; 407–408 Chen (10.1016/j.watres.2019.06.056_bib11) 2010; 51 Lin (10.1016/j.watres.2019.06.056_bib42) 2014; 1 Tuteja (10.1016/j.watres.2019.06.056_bib61) 2007; 318 Yang (10.1016/j.watres.2019.06.056_bib76) 2012; 22 Cheng (10.1016/j.watres.2019.06.056_bib13) 2010; 86 Chen (10.1016/j.watres.2019.06.056_bib9) 2018; 564 Boo (10.1016/j.watres.2019.06.056_bib4) 2016; 50 Lu (10.1016/j.watres.2019.06.056_bib44) 2018; 52 Domingues (10.1016/j.watres.2019.06.056_bib18) 2018; 9 Wang (10.1016/j.watres.2019.06.056_bib66) 2016; 50 Tsujii (10.1016/j.watres.2019.06.056_bib60) 1997; 36 Zhang (10.1016/j.watres.2019.06.056_bib77) 2014; 52 Lee (10.1016/j.watres.2019.06.056_bib38) 2016; 520 Siyal (10.1016/j.watres.2019.06.056_bib54) 2019; 243 Lu (10.1016/j.watres.2019.06.056_bib45) 2016; 514 Kota (10.1016/j.watres.2019.06.056_bib35) 2014; 6 Tuteja (10.1016/j.watres.2019.06.056_bib63) 2008; 33 Deng (10.1016/j.watres.2019.06.056_bib15) 2018; 206 Henderyckx (10.1016/j.watres.2019.06.056_bib23) 1967; 3 Feng (10.1016/j.watres.2019.06.056_bib21) 2016; 8 Howarter (10.1016/j.watres.2019.06.056_bib28) 2009; 329 Khaing (10.1016/j.watres.2019.06.056_bib33) 2010; 74 Sorvali (10.1016/j.watres.2019.06.056_bib56) 2018; 29 Hussain (10.1016/j.watres.2019.06.056_bib30) 2015 Gryta (10.1016/j.watres.2019.06.056_bib22) 2005; 265 Cassie (10.1016/j.watres.2019.06.056_bib8) 1944 Li (10.1016/j.watres.2019.06.056_bib41) 2014; 48 Drioli (10.1016/j.watres.2019.06.056_bib19) 2015; 356 Sivakumar (10.1016/j.watres.2019.06.056_bib53) 2013; 5 Sophocleous (10.1016/j.watres.2019.06.056_bib55) 2010; 18 Yang (10.1016/j.watres.2019.06.056_bib74) 2014; 456 Boo (10.1016/j.watres.2019.06.056_bib3) 2016; 50 Israelachvili (10.1016/j.watres.2019.06.056_bib31) 2011 Deshmukh (10.1016/j.watres.2019.06.056_bib16) 2018; 11 Hensel (10.1016/j.watres.2019.06.056_bib24) 2014; 26 Wong (10.1016/j.watres.2019.06.056_bib71) 2011; 477 Kadi (10.1016/j.watres.2019.06.056_bib32) 2019; 3 Srinivasarao (10.1016/j.watres.2019.06.056_bib57) 2001; 292 |
References_xml | – volume: 262 start-page: 91 year: 2005 end-page: 99 ident: bib17 article-title: Pervaporation separation of isopropanol/water mixtures through crosslinked chitosan membranes publication-title: J. Membr. Sci. – volume: 33 start-page: 752 year: 2008 end-page: 758 ident: bib63 article-title: Design parameters for superhydrophobicity and superoleophobicity publication-title: MRS Bull. – start-page: 546 year: 1944 end-page: 551 ident: bib8 article-title: Wettability of porous surfaces publication-title: Trans. Faraday Soc. – volume: 574 start-page: 349 year: 2019 end-page: 357 ident: bib40 article-title: Preparation of omniphobic PVDF membranes with silica nanoparticles for treating coking wastewater using direct contact membrane distillation: electrostatic adsorption vs. chemical bonding publication-title: J. Membr. Sci. – volume: 555 start-page: 197 year: 2018 end-page: 205 ident: bib79 article-title: Preparation of omniphobic PVDF membrane with hierarchical structure for treating saline oily wastewater using direct contact membrane distillation publication-title: J. Membr. Sci. – volume: 33 start-page: 1369 year: 2019 end-page: 1379 ident: bib52 article-title: Omniphobic surfaces: state-of-the-art and future perspectives publication-title: J. Adhes. Sci. Technol. – year: 2011 ident: bib31 article-title: Intermolecular and Surface Forces – volume: 28 start-page: 988 year: 1936 end-page: 994 ident: bib70 article-title: Resistance of solid surfaces to wetting by water publication-title: Ind. Eng. Chem. – volume: 413 start-page: 119 year: 2017 end-page: 126 ident: bib78 article-title: Fluorographite modified PVDF membranes for seawater desalination via direct contact membrane distillation publication-title: Desalination – volume: 24 start-page: 5838 year: 2012 end-page: 5843 ident: bib36 article-title: Hierarchically structured superoleophobic surfaces with ultralow contact angle hysteresis publication-title: Adv. Mater. – volume: 9 start-page: 1 year: 2018 end-page: 11 ident: bib18 article-title: Biomimetic coating-free surfaces for long-term entrapment of air under wetting liquids publication-title: Nat. Commun. – volume: 356 start-page: 56 year: 2015 end-page: 84 ident: bib19 article-title: Membrane distillation: recent developments and perspectives publication-title: Desalination – volume: 55 start-page: 244 year: 2016 end-page: 248 ident: bib65 article-title: Covalently attached liquids: instant omniphobic surfaces with unprecedented repellency publication-title: Angew. Chem. Int. Ed. – volume: 50 start-page: 8112 year: 2016 end-page: 8119 ident: bib4 article-title: Engineering surface energy and nanostructure of microporous films for expanded membrane distillation applications publication-title: Environ. Sci. Technol. – volume: 18 start-page: 973 year: 2006 end-page: 989 ident: bib5 article-title: Breath figures as a dynamic templating method for polymers and nanomaterials publication-title: Adv. Mater. – volume: 103 start-page: 362 year: 2016 end-page: 371 ident: bib1 article-title: High flux and antifouling properties of negatively charged membrane for dyeing wastewater treatment by membrane distillation publication-title: Water Res. – volume: 135 start-page: 16272 year: 2013 end-page: 16275 ident: bib58 article-title: Tuning omniphobicity via morphological control of metal-organic framework functionalized surfaces publication-title: J. Am. Chem. Soc. – start-page: 285 year: 2015 end-page: 292 ident: bib30 article-title: Treatment of produced water from oil & gas operations by membrane distillation publication-title: Proceedings of the 4th International Gas Processing Symposium – volume: 5 start-page: 157 year: 2013 end-page: 162 ident: bib53 article-title: Mine water treatment using a vacuum membrane distillation system publication-title: APCBEE Procedia – volume: 323 start-page: 31 year: 2013 end-page: 38 ident: bib20 article-title: Integrated direct contact membrane distillation for olive mill wastewater treatment publication-title: Desalination – volume: 228 start-page: 85 year: 2018 end-page: 88 ident: bib43 article-title: F-POSS based omniphobic membrane for robust membrane distillation publication-title: Mater. Lett. – volume: 52 start-page: 4472 year: 2018 end-page: 4480 ident: bib44 article-title: Omniphobic hollow-fiber membranes for vacuum membrane distillation publication-title: Environ. Sci. Technol. – volume: 243 start-page: 45 year: 2019 end-page: 66 ident: bib54 article-title: A review of membrane development in membrane distillation for emulsified industrial or shale gas wastewater treatments with feed containing hybrid impurities publication-title: J. Environ. Manag. – volume: 6 year: 2013 ident: bib34 article-title: Superomniphobic surfaces: design and durability publication-title: NPG Asia Mater. – volume: 36 start-page: 1011 year: 1997 end-page: 1012 ident: bib60 article-title: Super oil-repellent surfaces publication-title: Angew Chem. Int. Ed. Engl. – volume: 329 start-page: 127 year: 2009 end-page: 132 ident: bib28 article-title: Amphiphile grafted membranes for the separation of oil-in-water dispersions publication-title: J. Colloid Interface Sci. – volume: 124 start-page: 1 year: 1997 end-page: 25 ident: bib37 article-title: Membrane distillation publication-title: J. Membr. Sci. – volume: 51 start-page: 13304 year: 2017 end-page: 13310 ident: bib29 article-title: Novel janus membrane for membrane distillation with simultaneous fouling and wetting resistance publication-title: Environ. Sci. Technol. – volume: 529 start-page: 234 year: 2017 end-page: 242 ident: bib72 article-title: CF4 plasma-modified omniphobic electrospun nanofiber membrane for produced water brine treatment by membrane distillation publication-title: J. Membr. Sci. – volume: 48 start-page: 9898 year: 2014 end-page: 9907 ident: bib41 article-title: Anti-Fouling behavior of hyperbranched polyglycerol-grafted poly(ether sulfone) hollow fiber membranes for osmotic power generation publication-title: Environ. Sci. Technol. – volume: 450 start-page: 57 year: 2018 end-page: 65 ident: bib64 article-title: Hydrophilic surface coating on hydrophobic PTFE membrane for robust anti-oil-fouling membrane distillation publication-title: Appl. Surf. Sci. – volume: 356 start-page: 294 year: 2015 end-page: 313 ident: bib68 article-title: Scaling and fouling in membrane distillation for desalination applications: a review publication-title: Desalination – volume: 51 start-page: 2956 year: 2012 end-page: 2959 ident: bib12 article-title: A statically oleophilic but dynamically oleophobic smooth nonperfluorinated surface publication-title: Angew. Chem. Int. Ed. – volume: 1 start-page: 443 year: 2014 end-page: 447 ident: bib42 article-title: Omniphobic membrane for robust membrane distillation publication-title: Environ. Sci. Technol. Lett. – volume: 22 start-page: 2834 year: 2012 end-page: 2837 ident: bib76 article-title: Superhydrophilic-superoleophobic coatings publication-title: J. Mater. Chem. – volume: 475 start-page: 215 year: 2015 end-page: 244 ident: bib59 article-title: Fouling and its control in membrane distillation-A review publication-title: J. Membr. Sci. – volume: 206 start-page: 14 year: 2018 end-page: 25 ident: bib15 article-title: Self-roughened omniphobic coatings on nanofibrous membrane for membrane distillation publication-title: Separ. Purif. Technol. – volume: 6 start-page: e109 year: 2014 end-page: e116 ident: bib35 article-title: The design and applications of superomniphobic surfaces publication-title: NPG Asia Mater. – volume: 26 start-page: 792 year: 2015 end-page: 796 ident: bib49 article-title: Membrane distillation technology for treatment of wastewater from rubber industry in Malaysia publication-title: Procedia CIRP – volume: 564 start-page: 227 year: 2018 end-page: 236 ident: bib9 article-title: Nanostructure depositions on alumina hollow fiber membranes for enhanced wetting resistance during membrane distillation publication-title: J. Membr. Sci. – volume: 3 start-page: 237 year: 1967 end-page: 242 ident: bib23 article-title: Diffusion doublet research publication-title: Desalination – volume: 51 start-page: 5283 year: 2010 end-page: 5293 ident: bib11 article-title: Surface hydration: principles and applications toward low-fouling/nonfouling biomaterials publication-title: Polymer – volume: 79 start-page: 999 year: 2012 end-page: 1008 ident: bib48 article-title: Why is surface tension a force parallel to the interface? publication-title: Am. J. Phys. – volume: 477 start-page: 443 year: 2011 end-page: 447 ident: bib71 article-title: Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity publication-title: Nature – volume: 265 start-page: 153 year: 2005 end-page: 159 ident: bib22 article-title: Long-term performance of membrane distillation process publication-title: J. Membr. Sci. – volume: 139 start-page: 329 year: 2018 end-page: 352 ident: bib51 article-title: Wetting phenomena in membrane distillation: mechanisms, reversal, and prevention publication-title: Water Res. – volume: 5 year: 2013 ident: bib25 article-title: Tunable nano-replication to explore the omniphobic characteristics of springtail skin publication-title: NPG Asia Mater. – volume: 26 start-page: 4027 year: 2010 end-page: 4035 ident: bib14 article-title: Scale dependence of omniphobic mesh surfaces publication-title: Langmuir – volume: 8 year: 2017 ident: bib80 article-title: Well-defined porous membranes for robust omniphobic surfaces via microfluidic emulsion templating publication-title: Nat. Commun. – volume: 10 start-page: 11406 year: 2018 end-page: 11413 ident: bib2 article-title: Smooth, all-solid, low-hysteresis, omniphobic surfaces with enhanced mechanical durability publication-title: ACS Appl. Mater. Interfaces – volume: 86 start-page: 1 year: 2010 end-page: 3 ident: bib13 article-title: Is the lotus leaf superhydrophobic ? publication-title: Appl. Phys. Lett. – volume: 52 start-page: 112 year: 2014 end-page: 121 ident: bib77 article-title: Sustainable water recovery from oily wastewater via forward osmosis-membrane distillation (FO-MD) publication-title: Water Res. – volume: 514 start-page: 165 year: 2016 end-page: 175 ident: bib45 article-title: Tri-bore PVDF hollow fibers with a super-hydrophobic coating for membrane distillation publication-title: J. Membr. Sci. – volume: 38 start-page: 9742 year: 2005 end-page: 9748 ident: bib46 article-title: Superhydrophobic fabrics produced by electrospinning and chemical vapor deposition publication-title: Macromolecules – volume: 520 start-page: 145 year: 2016 end-page: 154 ident: bib38 article-title: Electrospun nanofiber membranes incorporating fluorosilane-coated TiO 2 nanocomposite for direct contact membrane distillation publication-title: J. Membr. Sci. – volume: 50 start-page: 2132 year: 2016 end-page: 2150 ident: bib66 article-title: Environmental applications of interfacial materials with special wettability publication-title: Environ. Sci. Technol. – volume: 83 start-page: 209 year: 1991 end-page: 224 ident: bib6 article-title: Membrane distillation in the textile wastewater treatment publication-title: Desalination – volume: 5 start-page: 94 year: 2013 end-page: 196 ident: bib7 article-title: Advances in membrane distillation for water desalination and purification applications publication-title: Water – volume: 8 start-page: 11154 year: 2016 end-page: 11161 ident: bib39 article-title: Development of omniphobic desalination membranes using a charged electrospun nanofiber scaffold publication-title: ACS Appl. Mater. Interfaces – volume: 52 start-page: 2186 year: 2018 end-page: 2196 ident: bib73 article-title: Hierarchical composite membranes with robust omniphobic surface using layer-by-layer assembly technique publication-title: Environ. Sci. Technol. – volume: 482 start-page: 25 year: 2015 end-page: 32 ident: bib75 article-title: Effective evaporation of CF4 plasma modified PVDF membranes in direct contact membrane distillation publication-title: J. Membr. Sci. – volume: 74 start-page: 138 year: 2010 end-page: 143 ident: bib33 article-title: Feasibility study on petrochemical wastewater treatment and reuse using a novel submerged membrane distillation bioreactor publication-title: Separ. Purif. Technol. – volume: 105 start-page: 18200 year: 2008 end-page: 18205 ident: bib62 article-title: Robust omniphobic surfaces publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – volume: 50 start-page: 12275 year: 2016 end-page: 12282 ident: bib3 article-title: Omniphobic polyvinylidene fluoride (PVDF) membrane for desalination of shale gas produced water by membrane distillation publication-title: Environ. Sci. Technol. – volume: 428 start-page: 255 year: 2018 end-page: 263 ident: bib10 article-title: Omniphobic membranes for direct contact membrane distillation: effective deposition of zinc oxide nanoparticles publication-title: Desalination – volume: 456 start-page: 155 year: 2014 end-page: 161 ident: bib74 article-title: CF4 plasma-modified superhydrophobic PVDF membranes for direct contact membrane distillation publication-title: J. Membr. Sci. – volume: 29 start-page: 1 year: 2018 end-page: 11 ident: bib56 article-title: Fabrication of ultrathin multilayered superomniphobic nanocoatings by liquid flame spray, atomic layer deposition, and silanization publication-title: Nanotechnology – volume: 18 start-page: 811 year: 2010 end-page: 821 ident: bib55 article-title: Understanding and explaining surface tension and capillarity: an introduction to fundamental physics for water publication-title: Hydrogeol. J. – volume: 11 start-page: 1177 year: 2018 end-page: 1196 ident: bib16 article-title: Membrane distillation at the water-energy nexus: limits, opportunities, and challenges publication-title: Energy Environ. Sci. – volume: 26 start-page: 2029 year: 2014 end-page: 2033 ident: bib24 article-title: Biologically inspired omniphobic surfaces by reverse imprint lithography publication-title: Adv. Mater. – volume: 49 start-page: 597 year: 2013 end-page: 599 ident: bib47 article-title: Perfluoropolyether-infused nano-texture: a versatile approach to omniphobic coatings with low hysteresis and high transparency publication-title: Chem. Commun. – volume: 8 start-page: 8773 year: 2016 end-page: 8781 ident: bib21 article-title: Amphiphobic polytetrafluoroethylene membranes for efficient organic aerosol removal publication-title: ACS Appl. Mater. Interfaces – volume: 45 start-page: 323 year: 2016 end-page: 341 ident: bib26 article-title: The springtail cuticle as a blueprint for omniphobic surfaces publication-title: Chem. Soc. Rev. – volume: 318 start-page: 1618 year: 2007 end-page: 1622 ident: bib61 article-title: Designing superoleophobic surfaces publication-title: Science – volume: 415–416 start-page: 850 year: 2012 end-page: 863 ident: bib50 article-title: Superhydrophobic modification of TiO2nanocomposite PVDF membranes for applications in membrane distillation publication-title: J. Membr. Sci. – volume: 112 start-page: 38 year: 2017 end-page: 47 ident: bib67 article-title: Membrane fouling and wetting in membrane distillation and their mitigation by novel membranes with special wettability publication-title: Water Res. – volume: 3 start-page: 1 year: 2019 end-page: 9 ident: bib32 article-title: Refinery processed water treatment via the low energy Direct Contact Membrane Distillation (DCMD) publication-title: Oil Gas Sci. Technol. - Rev. IFP Energies Nouv. – volume: 273 start-page: 23 year: 2011 end-page: 35 ident: bib27 article-title: Boron removal from saline water: a comprehensive review publication-title: Desalination – volume: 292 start-page: 79 year: 2001 end-page: 83 ident: bib57 article-title: Three-dimensionally ordered array of air bubbles in a polymer film publication-title: Science – volume: 407–408 start-page: 164 year: 2012 end-page: 175 ident: bib69 article-title: CF 4 plasma surface modification of asymmetric hydrophilic polyethersulfone membranes for direct contact membrane distillation publication-title: J. Memb. Sci. – volume: 79 start-page: 999 year: 2012 ident: 10.1016/j.watres.2019.06.056_bib48 article-title: Why is surface tension a force parallel to the interface? publication-title: Am. J. Phys. doi: 10.1119/1.3619866 – volume: 33 start-page: 752 year: 2008 ident: 10.1016/j.watres.2019.06.056_bib63 article-title: Design parameters for superhydrophobicity and superoleophobicity publication-title: MRS Bull. doi: 10.1557/mrs2008.161 – volume: 1 start-page: 443 year: 2014 ident: 10.1016/j.watres.2019.06.056_bib42 article-title: Omniphobic membrane for robust membrane distillation publication-title: Environ. Sci. Technol. Lett. doi: 10.1021/ez500267p – volume: 475 start-page: 215 year: 2015 ident: 10.1016/j.watres.2019.06.056_bib59 article-title: Fouling and its control in membrane distillation-A review publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2014.09.042 – volume: 407–408 start-page: 164 year: 2012 ident: 10.1016/j.watres.2019.06.056_bib69 article-title: CF 4 plasma surface modification of asymmetric hydrophilic polyethersulfone membranes for direct contact membrane distillation publication-title: J. Memb. Sci. doi: 10.1016/j.memsci.2012.03.031 – volume: 482 start-page: 25 year: 2015 ident: 10.1016/j.watres.2019.06.056_bib75 article-title: Effective evaporation of CF4 plasma modified PVDF membranes in direct contact membrane distillation publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2015.01.059 – volume: 48 start-page: 9898 year: 2014 ident: 10.1016/j.watres.2019.06.056_bib41 article-title: Anti-Fouling behavior of hyperbranched polyglycerol-grafted poly(ether sulfone) hollow fiber membranes for osmotic power generation publication-title: Environ. Sci. Technol. doi: 10.1021/es5017262 – volume: 3 start-page: 237 year: 1967 ident: 10.1016/j.watres.2019.06.056_bib23 article-title: Diffusion doublet research publication-title: Desalination doi: 10.1016/0011-9164(67)80014-6 – volume: 51 start-page: 2956 year: 2012 ident: 10.1016/j.watres.2019.06.056_bib12 article-title: A statically oleophilic but dynamically oleophobic smooth nonperfluorinated surface publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201108800 – volume: 55 start-page: 244 year: 2016 ident: 10.1016/j.watres.2019.06.056_bib65 article-title: Covalently attached liquids: instant omniphobic surfaces with unprecedented repellency publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201509385 – volume: 292 start-page: 79 year: 2001 ident: 10.1016/j.watres.2019.06.056_bib57 article-title: Three-dimensionally ordered array of air bubbles in a polymer film publication-title: Science doi: 10.1126/science.1057887 – volume: 103 start-page: 362 year: 2016 ident: 10.1016/j.watres.2019.06.056_bib1 article-title: High flux and antifouling properties of negatively charged membrane for dyeing wastewater treatment by membrane distillation publication-title: Water Res. doi: 10.1016/j.watres.2016.07.060 – volume: 9 start-page: 1 year: 2018 ident: 10.1016/j.watres.2019.06.056_bib18 article-title: Biomimetic coating-free surfaces for long-term entrapment of air under wetting liquids publication-title: Nat. Commun. doi: 10.1038/s41467-018-05895-x – volume: 26 start-page: 4027 year: 2010 ident: 10.1016/j.watres.2019.06.056_bib14 article-title: Scale dependence of omniphobic mesh surfaces publication-title: Langmuir doi: 10.1021/la903489r – volume: 520 start-page: 145 year: 2016 ident: 10.1016/j.watres.2019.06.056_bib38 article-title: Electrospun nanofiber membranes incorporating fluorosilane-coated TiO 2 nanocomposite for direct contact membrane distillation publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2016.07.019 – volume: 29 start-page: 1 year: 2018 ident: 10.1016/j.watres.2019.06.056_bib56 article-title: Fabrication of ultrathin multilayered superomniphobic nanocoatings by liquid flame spray, atomic layer deposition, and silanization publication-title: Nanotechnology – volume: 18 start-page: 973 year: 2006 ident: 10.1016/j.watres.2019.06.056_bib5 article-title: Breath figures as a dynamic templating method for polymers and nanomaterials publication-title: Adv. Mater. doi: 10.1002/adma.200501131 – volume: 51 start-page: 5283 year: 2010 ident: 10.1016/j.watres.2019.06.056_bib11 article-title: Surface hydration: principles and applications toward low-fouling/nonfouling biomaterials publication-title: Polymer doi: 10.1016/j.polymer.2010.08.022 – volume: 26 start-page: 2029 year: 2014 ident: 10.1016/j.watres.2019.06.056_bib24 article-title: Biologically inspired omniphobic surfaces by reverse imprint lithography publication-title: Adv. Mater. doi: 10.1002/adma.201305408 – volume: 38 start-page: 9742 year: 2005 ident: 10.1016/j.watres.2019.06.056_bib46 article-title: Superhydrophobic fabrics produced by electrospinning and chemical vapor deposition publication-title: Macromolecules doi: 10.1021/ma0511189 – volume: 51 start-page: 13304 year: 2017 ident: 10.1016/j.watres.2019.06.056_bib29 article-title: Novel janus membrane for membrane distillation with simultaneous fouling and wetting resistance publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b02848 – volume: 50 start-page: 2132 year: 2016 ident: 10.1016/j.watres.2019.06.056_bib66 article-title: Environmental applications of interfacial materials with special wettability publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b04351 – volume: 6 year: 2013 ident: 10.1016/j.watres.2019.06.056_bib34 article-title: Superomniphobic surfaces: design and durability publication-title: NPG Asia Mater. – volume: 139 start-page: 329 year: 2018 ident: 10.1016/j.watres.2019.06.056_bib51 article-title: Wetting phenomena in membrane distillation: mechanisms, reversal, and prevention publication-title: Water Res. doi: 10.1016/j.watres.2018.03.058 – volume: 52 start-page: 2186 year: 2018 ident: 10.1016/j.watres.2019.06.056_bib73 article-title: Hierarchical composite membranes with robust omniphobic surface using layer-by-layer assembly technique publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b05450 – volume: 450 start-page: 57 year: 2018 ident: 10.1016/j.watres.2019.06.056_bib64 article-title: Hydrophilic surface coating on hydrophobic PTFE membrane for robust anti-oil-fouling membrane distillation publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.04.180 – start-page: 285 year: 2015 ident: 10.1016/j.watres.2019.06.056_bib30 article-title: Treatment of produced water from oil & gas operations by membrane distillation – volume: 514 start-page: 165 year: 2016 ident: 10.1016/j.watres.2019.06.056_bib45 article-title: Tri-bore PVDF hollow fibers with a super-hydrophobic coating for membrane distillation publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2016.04.058 – volume: 228 start-page: 85 year: 2018 ident: 10.1016/j.watres.2019.06.056_bib43 article-title: F-POSS based omniphobic membrane for robust membrane distillation publication-title: Mater. Lett. doi: 10.1016/j.matlet.2018.05.126 – volume: 135 start-page: 16272 year: 2013 ident: 10.1016/j.watres.2019.06.056_bib58 article-title: Tuning omniphobicity via morphological control of metal-organic framework functionalized surfaces publication-title: J. Am. Chem. Soc. doi: 10.1021/ja407896m – volume: 36 start-page: 1011 year: 1997 ident: 10.1016/j.watres.2019.06.056_bib60 article-title: Super oil-repellent surfaces publication-title: Angew Chem. Int. Ed. Engl. doi: 10.1002/anie.199710111 – volume: 5 start-page: 157 year: 2013 ident: 10.1016/j.watres.2019.06.056_bib53 article-title: Mine water treatment using a vacuum membrane distillation system publication-title: APCBEE Procedia doi: 10.1016/j.apcbee.2013.05.028 – volume: 105 start-page: 18200 year: 2008 ident: 10.1016/j.watres.2019.06.056_bib62 article-title: Robust omniphobic surfaces publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.0804872105 – volume: 555 start-page: 197 year: 2018 ident: 10.1016/j.watres.2019.06.056_bib79 article-title: Preparation of omniphobic PVDF membrane with hierarchical structure for treating saline oily wastewater using direct contact membrane distillation publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2018.03.041 – volume: 50 start-page: 8112 year: 2016 ident: 10.1016/j.watres.2019.06.056_bib4 article-title: Engineering surface energy and nanostructure of microporous films for expanded membrane distillation applications publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b02316 – volume: 28 start-page: 988 year: 1936 ident: 10.1016/j.watres.2019.06.056_bib70 article-title: Resistance of solid surfaces to wetting by water publication-title: Ind. Eng. Chem. doi: 10.1021/ie50320a024 – start-page: 546 year: 1944 ident: 10.1016/j.watres.2019.06.056_bib8 article-title: Wettability of porous surfaces publication-title: Trans. Faraday Soc. doi: 10.1039/tf9444000546 – volume: 356 start-page: 294 year: 2015 ident: 10.1016/j.watres.2019.06.056_bib68 article-title: Scaling and fouling in membrane distillation for desalination applications: a review publication-title: Desalination doi: 10.1016/j.desal.2014.06.031 – volume: 564 start-page: 227 year: 2018 ident: 10.1016/j.watres.2019.06.056_bib9 article-title: Nanostructure depositions on alumina hollow fiber membranes for enhanced wetting resistance during membrane distillation publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2018.07.011 – volume: 26 start-page: 792 year: 2015 ident: 10.1016/j.watres.2019.06.056_bib49 article-title: Membrane distillation technology for treatment of wastewater from rubber industry in Malaysia publication-title: Procedia CIRP doi: 10.1016/j.procir.2014.07.161 – volume: 52 start-page: 112 year: 2014 ident: 10.1016/j.watres.2019.06.056_bib77 article-title: Sustainable water recovery from oily wastewater via forward osmosis-membrane distillation (FO-MD) publication-title: Water Res. doi: 10.1016/j.watres.2013.12.044 – volume: 49 start-page: 597 year: 2013 ident: 10.1016/j.watres.2019.06.056_bib47 article-title: Perfluoropolyether-infused nano-texture: a versatile approach to omniphobic coatings with low hysteresis and high transparency publication-title: Chem. Commun. doi: 10.1039/C2CC37576A – volume: 83 start-page: 209 year: 1991 ident: 10.1016/j.watres.2019.06.056_bib6 article-title: Membrane distillation in the textile wastewater treatment publication-title: Desalination doi: 10.1016/0011-9164(91)85096-D – volume: 273 start-page: 23 year: 2011 ident: 10.1016/j.watres.2019.06.056_bib27 article-title: Boron removal from saline water: a comprehensive review publication-title: Desalination doi: 10.1016/j.desal.2010.05.012 – volume: 5 start-page: 94 year: 2013 ident: 10.1016/j.watres.2019.06.056_bib7 article-title: Advances in membrane distillation for water desalination and purification applications publication-title: Water doi: 10.3390/w5010094 – volume: 6 start-page: e109 year: 2014 ident: 10.1016/j.watres.2019.06.056_bib35 article-title: The design and applications of superomniphobic surfaces publication-title: NPG Asia Mater. doi: 10.1038/am.2014.34 – volume: 243 start-page: 45 year: 2019 ident: 10.1016/j.watres.2019.06.056_bib54 article-title: A review of membrane development in membrane distillation for emulsified industrial or shale gas wastewater treatments with feed containing hybrid impurities publication-title: J. Environ. Manag. – volume: 356 start-page: 56 year: 2015 ident: 10.1016/j.watres.2019.06.056_bib19 article-title: Membrane distillation: recent developments and perspectives publication-title: Desalination doi: 10.1016/j.desal.2014.10.028 – volume: 3 start-page: 1 year: 2019 ident: 10.1016/j.watres.2019.06.056_bib32 article-title: Refinery processed water treatment via the low energy Direct Contact Membrane Distillation (DCMD) publication-title: Oil Gas Sci. Technol. - Rev. IFP Energies Nouv. – volume: 8 start-page: 11154 year: 2016 ident: 10.1016/j.watres.2019.06.056_bib39 article-title: Development of omniphobic desalination membranes using a charged electrospun nanofiber scaffold publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b02419 – volume: 329 start-page: 127 year: 2009 ident: 10.1016/j.watres.2019.06.056_bib28 article-title: Amphiphile grafted membranes for the separation of oil-in-water dispersions publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2008.09.068 – volume: 74 start-page: 138 year: 2010 ident: 10.1016/j.watres.2019.06.056_bib33 article-title: Feasibility study on petrochemical wastewater treatment and reuse using a novel submerged membrane distillation bioreactor publication-title: Separ. Purif. Technol. doi: 10.1016/j.seppur.2010.05.016 – volume: 33 start-page: 1369 year: 2019 ident: 10.1016/j.watres.2019.06.056_bib52 article-title: Omniphobic surfaces: state-of-the-art and future perspectives publication-title: J. Adhes. Sci. Technol. doi: 10.1080/01694243.2019.1599217 – volume: 529 start-page: 234 year: 2017 ident: 10.1016/j.watres.2019.06.056_bib72 article-title: CF4 plasma-modified omniphobic electrospun nanofiber membrane for produced water brine treatment by membrane distillation publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2017.01.063 – volume: 318 start-page: 1618 year: 2007 ident: 10.1016/j.watres.2019.06.056_bib61 article-title: Designing superoleophobic surfaces publication-title: Science doi: 10.1126/science.1148326 – volume: 22 start-page: 2834 year: 2012 ident: 10.1016/j.watres.2019.06.056_bib76 article-title: Superhydrophilic-superoleophobic coatings publication-title: J. Mater. Chem. doi: 10.1039/c2jm15987b – volume: 5 year: 2013 ident: 10.1016/j.watres.2019.06.056_bib25 article-title: Tunable nano-replication to explore the omniphobic characteristics of springtail skin publication-title: NPG Asia Mater. doi: 10.1038/am.2012.66 – volume: 18 start-page: 811 year: 2010 ident: 10.1016/j.watres.2019.06.056_bib55 article-title: Understanding and explaining surface tension and capillarity: an introduction to fundamental physics for water publication-title: Hydrogeol. J. doi: 10.1007/s10040-009-0565-5 – volume: 86 start-page: 1 year: 2010 ident: 10.1016/j.watres.2019.06.056_bib13 article-title: Is the lotus leaf superhydrophobic ? publication-title: Appl. Phys. Lett. – volume: 206 start-page: 14 year: 2018 ident: 10.1016/j.watres.2019.06.056_bib15 article-title: Self-roughened omniphobic coatings on nanofibrous membrane for membrane distillation publication-title: Separ. Purif. Technol. doi: 10.1016/j.seppur.2018.05.035 – volume: 8 year: 2017 ident: 10.1016/j.watres.2019.06.056_bib80 article-title: Well-defined porous membranes for robust omniphobic surfaces via microfluidic emulsion templating publication-title: Nat. Commun. doi: 10.1038/ncomms15823 – volume: 124 start-page: 1 year: 1997 ident: 10.1016/j.watres.2019.06.056_bib37 article-title: Membrane distillation publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(96)00236-0 – volume: 456 start-page: 155 year: 2014 ident: 10.1016/j.watres.2019.06.056_bib74 article-title: CF4 plasma-modified superhydrophobic PVDF membranes for direct contact membrane distillation publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2014.01.013 – volume: 428 start-page: 255 year: 2018 ident: 10.1016/j.watres.2019.06.056_bib10 article-title: Omniphobic membranes for direct contact membrane distillation: effective deposition of zinc oxide nanoparticles publication-title: Desalination doi: 10.1016/j.desal.2017.11.029 – volume: 52 start-page: 4472 year: 2018 ident: 10.1016/j.watres.2019.06.056_bib44 article-title: Omniphobic hollow-fiber membranes for vacuum membrane distillation publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b00766 – volume: 45 start-page: 323 year: 2016 ident: 10.1016/j.watres.2019.06.056_bib26 article-title: The springtail cuticle as a blueprint for omniphobic surfaces publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00438A – volume: 10 start-page: 11406 year: 2018 ident: 10.1016/j.watres.2019.06.056_bib2 article-title: Smooth, all-solid, low-hysteresis, omniphobic surfaces with enhanced mechanical durability publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b00521 – volume: 265 start-page: 153 year: 2005 ident: 10.1016/j.watres.2019.06.056_bib22 article-title: Long-term performance of membrane distillation process publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2005.04.049 – volume: 574 start-page: 349 year: 2019 ident: 10.1016/j.watres.2019.06.056_bib40 article-title: Preparation of omniphobic PVDF membranes with silica nanoparticles for treating coking wastewater using direct contact membrane distillation: electrostatic adsorption vs. chemical bonding publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2018.12.079 – volume: 323 start-page: 31 year: 2013 ident: 10.1016/j.watres.2019.06.056_bib20 article-title: Integrated direct contact membrane distillation for olive mill wastewater treatment publication-title: Desalination doi: 10.1016/j.desal.2012.06.014 – volume: 413 start-page: 119 year: 2017 ident: 10.1016/j.watres.2019.06.056_bib78 article-title: Fluorographite modified PVDF membranes for seawater desalination via direct contact membrane distillation publication-title: Desalination doi: 10.1016/j.desal.2017.03.012 – volume: 262 start-page: 91 year: 2005 ident: 10.1016/j.watres.2019.06.056_bib17 article-title: Pervaporation separation of isopropanol/water mixtures through crosslinked chitosan membranes publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2005.03.051 – volume: 8 start-page: 8773 year: 2016 ident: 10.1016/j.watres.2019.06.056_bib21 article-title: Amphiphobic polytetrafluoroethylene membranes for efficient organic aerosol removal publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b11315 – volume: 415–416 start-page: 850 year: 2012 ident: 10.1016/j.watres.2019.06.056_bib50 article-title: Superhydrophobic modification of TiO2nanocomposite PVDF membranes for applications in membrane distillation publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2012.06.004 – volume: 50 start-page: 12275 year: 2016 ident: 10.1016/j.watres.2019.06.056_bib3 article-title: Omniphobic polyvinylidene fluoride (PVDF) membrane for desalination of shale gas produced water by membrane distillation publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b03882 – year: 2011 ident: 10.1016/j.watres.2019.06.056_bib31 – volume: 477 start-page: 443 year: 2011 ident: 10.1016/j.watres.2019.06.056_bib71 article-title: Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity publication-title: Nature doi: 10.1038/nature10447 – volume: 24 start-page: 5838 year: 2012 ident: 10.1016/j.watres.2019.06.056_bib36 article-title: Hierarchically structured superoleophobic surfaces with ultralow contact angle hysteresis publication-title: Adv. Mater. doi: 10.1002/adma.201202554 – volume: 112 start-page: 38 year: 2017 ident: 10.1016/j.watres.2019.06.056_bib67 article-title: Membrane fouling and wetting in membrane distillation and their mitigation by novel membranes with special wettability publication-title: Water Res. doi: 10.1016/j.watres.2017.01.022 – volume: 11 start-page: 1177 year: 2018 ident: 10.1016/j.watres.2019.06.056_bib16 article-title: Membrane distillation at the water-energy nexus: limits, opportunities, and challenges publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00291F |
SSID | ssj0002239 |
Score | 2.6565537 |
SecondaryResourceType | review_article |
Snippet | Membrane distillation (MD) has a great potential in treating high salinity industrial wastewater due to its unique characteristics. Nevertheless, the... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 64 |
SubjectTerms | Anti-wetting distillation industrial wastewater Industrial wastewater treatment Low surface energy Membrane distillation Omniphobic interfaces Re-entrant structure salinity surface tension water reuse |
Title | Design of omniphobic interfaces for membrane distillation – A review |
URI | https://dx.doi.org/10.1016/j.watres.2019.06.056 https://www.ncbi.nlm.nih.gov/pubmed/31255782 https://www.proquest.com/docview/2250626399 https://www.proquest.com/docview/2439382216 |
Volume | 162 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fS8MwEA9DX_RB_P9_RPC1bmnTZnkc0zEV9uRgbyFpU5xs7RgbvonfwW_oJ_GuaaeCOhD60nIp4S65-4X87o6QyzjUUZDA_valjT3O4sTTloVemLSkr43AK0RkW_Sj3oDfDcNhjXSqXBikVZa-3_n0wluXXxqlNhvT0QhzfCH4BSEHCAJRXA4xg50LXOVXL580Dwh_srplRukqfa7geD1rTMhAgpcsqnhiG-ufw9Nv8LMIQ91tslXiR9p2U9whNZvtks0vVQX3SPe6YGXQPKX5JBtNH3MziinWhZilSMCigFPpxE7gnJxZmuAmHztGHH1_faNt6tJZ9smge_PQ6XlluwQv5hGbe0ID9G8Zm3DbZMZPmJ-IptG-jgwmlIKpuBQ2iqyFI5bmWqfg7FisrTCMGwhlB2QtyzN7RKi0WBaspa3mcKLhFh6AeQxetJBpGh2ToNKSista4tjSYqwq0tiTcrpVqFuF3LkQRnnLUVNXS2OFvKgMoL6tCQXufsXIi8peCrYL3oGARvMFCAHkwwI8Uv4hAyAtAODE4D-HztjL-QYACLEDwMm_53ZKNvDNEQLPyNp8trDnAGzmpl6s3DpZb9_e9_ofLU74VQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qe1AP4vutK3gN7Sabxx5LtbS29tRCb8tussFKm5TS4tX_4D_0lziTR1HwAUIuSXbCMpOd-Zb9ZoaQ29BVnhPB-raFCS3OwshShrmWGwXCVtrHI0RkWwy8zog_jN1xhbTKXBikVRa-P_fpmbcuntQLbdbnkwnm-ELwc1wOEASiuBhvkBpWp3KrpNbs9jqDtUOGCCjKg2YUKDPoMprXi8KcDOR4iayQJ3ay_j5C_YRAs0jU3iU7BYSkzXyWe6Rikn2y_amw4AFp32XEDJrGNJ0lk_lTqichxdIQixg5WBSgKp2ZGWyVE0MjXOfTnBRH31_faJPmGS2HZNS-H7Y6VtExwQq5x5aWrwD9B9pE3DSYtiNmR35DK1t5GnNKwVpc-MbzjIFdluJKxeDvWKiMrxnXEM2OSDVJE3NCqDBYGSxQRoFSA27gAqTH4Eb5Io69U-KUWpJhUU4cu1pMZckbe5a5biXqViJ9zgUpay01z8tp_DHeLw0gv_wWEjz-H5I3pb0krBg8BgGNpisYBKgPa_AI8csYwGkOYCcG3znOjb2erwOYEJsAnP17btdkszN87Mt-d9A7J1v4JucHXpDqcrEyl4Bzlvqq-I8_AK1c-wY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+omniphobic+interfaces+for+membrane+distillation+-+A+review&rft.jtitle=Water+research+%28Oxford%29&rft.au=Lu%2C+Kang+Jia&rft.au=Chen%2C+Yuanmiaoliang&rft.au=Chung%2C+Tai-Shung&rft.date=2019-10-01&rft.issn=1879-2448&rft.eissn=1879-2448&rft.volume=162&rft.spage=64&rft_id=info:doi/10.1016%2Fj.watres.2019.06.056&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon |