Design of omniphobic interfaces for membrane distillation – A review
Membrane distillation (MD) has a great potential in treating high salinity industrial wastewater due to its unique characteristics. Nevertheless, the implementation of MD for industrial wastewater reclamation must be conducted with precaution because low-surface-tension contaminates in feed solution...
Saved in:
Published in | Water research (Oxford) Vol. 162; pp. 64 - 77 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.10.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Membrane distillation (MD) has a great potential in treating high salinity industrial wastewater due to its unique characteristics. Nevertheless, the implementation of MD for industrial wastewater reclamation must be conducted with precaution because low-surface-tension contaminates in feed solutions may easily wet the membranes. In recent years, omniphobic membranes that exhibit strong repellence towards liquids with a wide range of surface tensions have been proposed as a promising solution to deal with the wetting problem. In this paper, we aim to provide a comprehensive review of omniphobic interfaces and illustrate their fundamental working principles, innovative design approaches and novel applications on membrane distillation. The review may provide insights in designing stable solid-liquid-vapor interfaces and serve as a guidance for the development of robust anti-wetting membranes for industrial wastewater reclamation via membrane distillation.
[Display omitted]
•Fundamentals of designing robust omniphobic surfaces.•Novel fabrication methods to create re-entrant structures and low surface energy coatings.•A comprehensive summary of omniphobic membranes for membrane distillation.•Challenges and perspectives of omniphobic membranes for industrial wastewater treatment. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ISSN: | 0043-1354 1879-2448 1879-2448 |
DOI: | 10.1016/j.watres.2019.06.056 |