The AKI-to-CKD Transition: The Role of Uremic Toxins

After acute kidney injury (AKI), renal function continues to deteriorate in some patients. In a pro-inflammatory and profibrotic environment, the proximal tubules are subject to maladaptive repair. In the AKI-to-CKD transition, impaired recovery from AKI reduces tubular and glomerular filtration and...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of molecular sciences Vol. 24; no. 22; p. 16152
Main Authors André, Camille, Bodeau, Sandra, Kamel, Saïd, Bennis, Youssef, Caillard, Pauline
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 10.11.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:After acute kidney injury (AKI), renal function continues to deteriorate in some patients. In a pro-inflammatory and profibrotic environment, the proximal tubules are subject to maladaptive repair. In the AKI-to-CKD transition, impaired recovery from AKI reduces tubular and glomerular filtration and leads to chronic kidney disease (CKD). Reduced kidney secretion capacity is characterized by the plasma accumulation of biologically active molecules, referred to as uremic toxins (UTs). These toxins have a role in the development of neurological, cardiovascular, bone, and renal complications of CKD. However, UTs might also cause CKD as well as be the consequence. Recent studies have shown that these molecules accumulate early in AKI and contribute to the establishment of this pro-inflammatory and profibrotic environment in the kidney. The objective of the present work was to review the mechanisms of UT toxicity that potentially contribute to the AKI-to-CKD transition in each renal compartment.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms242216152