A semiparametric accelerated failure time-based mixture cure tree

The mixture cure rate model (MCM) is the most widely used model for the analysis of survival data with a cured subgroup. In this context, the most common strategy to model the cure probability is to assume a generalized linear model with a known link function, such as the logit link function. Howeve...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied statistics Vol. 52; no. 6; pp. 1177 - 1194
Main Authors Aselisewine, Wisdom, Pal, Suvra, Saulo, Helton
Format Journal Article
LanguageEnglish
Published England Taylor & Francis 26.04.2025
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0266-4763
1360-0532
DOI10.1080/02664763.2024.2418476

Cover

Loading…
Abstract The mixture cure rate model (MCM) is the most widely used model for the analysis of survival data with a cured subgroup. In this context, the most common strategy to model the cure probability is to assume a generalized linear model with a known link function, such as the logit link function. However, the logit model can only capture simple effects of covariates on the cure probability. In this article, we propose a new MCM where the cure probability is modeled using a decision tree-based classifier and the survival distribution of the uncured is modeled using an accelerated failure time structure. To estimate the model parameters, we develop an expectation maximization algorithm. Our simulation study shows that the proposed model performs better in capturing nonlinear classification boundaries when compared to the logit-based MCM and the spline-based MCM. This results in more accurate and precise estimates of the cured probabilities, which in-turn results in improved predictive accuracy of cure. We further show that capturing nonlinear classification boundary also improves the estimation results corresponding to the survival distribution of the uncured subjects. Finally, we apply our proposed model and the EM algorithm to analyze an existing bone marrow transplant data.
AbstractList The mixture cure rate model (MCM) is the most widely used model for the analysis of survival data with a cured subgroup. In this context, the most common strategy to model the cure probability is to assume a generalized linear model with a known link function, such as the logit link function. However, the logit model can only capture simple effects of covariates on the cure probability. In this article, we propose a new MCM where the cure probability is modeled using a decision tree-based classifier and the survival distribution of the uncured is modeled using an accelerated failure time structure. To estimate the model parameters, we develop an expectation maximization algorithm. Our simulation study shows that the proposed model performs better in capturing nonlinear classification boundaries when compared to the logit-based MCM and the spline-based MCM. This results in more accurate and precise estimates of the cured probabilities, which in-turn results in improved predictive accuracy of cure. We further show that capturing nonlinear classification boundary also improves the estimation results corresponding to the survival distribution of the uncured subjects. Finally, we apply our proposed model and the EM algorithm to analyze an existing bone marrow transplant data.
The mixture cure rate model (MCM) is the most widely used model for the analysis of survival data with a cured subgroup. In this context, the most common strategy to model the cure probability is to assume a generalized linear model with a known link function, such as the logit link function. However, the logit model can only capture simple effects of covariates on the cure probability. In this article, we propose a new MCM where the cure probability is modeled using a decision tree-based classifier and the survival distribution of the uncured is modeled using an accelerated failure time structure. To estimate the model parameters, we develop an expectation maximization algorithm. Our simulation study shows that the proposed model performs better in capturing nonlinear classification boundaries when compared to the logit-based MCM and the spline-based MCM. This results in more accurate and precise estimates of the cured probabilities, which in-turn results in improved predictive accuracy of cure. We further show that capturing nonlinear classification boundary also improves the estimation results corresponding to the survival distribution of the uncured subjects. Finally, we apply our proposed model and the EM algorithm to analyze an existing bone marrow transplant data.The mixture cure rate model (MCM) is the most widely used model for the analysis of survival data with a cured subgroup. In this context, the most common strategy to model the cure probability is to assume a generalized linear model with a known link function, such as the logit link function. However, the logit model can only capture simple effects of covariates on the cure probability. In this article, we propose a new MCM where the cure probability is modeled using a decision tree-based classifier and the survival distribution of the uncured is modeled using an accelerated failure time structure. To estimate the model parameters, we develop an expectation maximization algorithm. Our simulation study shows that the proposed model performs better in capturing nonlinear classification boundaries when compared to the logit-based MCM and the spline-based MCM. This results in more accurate and precise estimates of the cured probabilities, which in-turn results in improved predictive accuracy of cure. We further show that capturing nonlinear classification boundary also improves the estimation results corresponding to the survival distribution of the uncured subjects. Finally, we apply our proposed model and the EM algorithm to analyze an existing bone marrow transplant data.
Author Saulo, Helton
Aselisewine, Wisdom
Pal, Suvra
Author_xml – sequence: 1
  givenname: Wisdom
  surname: Aselisewine
  fullname: Aselisewine, Wisdom
  organization: University of Texas at Arlington
– sequence: 2
  givenname: Suvra
  orcidid: 0000-0001-9864-9489
  surname: Pal
  fullname: Pal, Suvra
  email: suvra.pal@uta.edu
  organization: University of Texas at Arlington
– sequence: 3
  givenname: Helton
  orcidid: 0000-0002-4467-8652
  surname: Saulo
  fullname: Saulo, Helton
  organization: Universidade de Brasília
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40303565$$D View this record in MEDLINE/PubMed
BookMark eNp90UtLAzEQB_Agiq2Pj6AUvHjZmnd2bxbxBYIXPYckO4GUfdRkF_Xbm7XVgwdPIcNvhmH-R2i_6ztA6IzgJcElvsJUSq4kW1JM-ZJyUubfHpoTJnGBBaP7aD6ZYkIzdJTSGmNcEsEO0YxjhpmQYo5Wq0WCNmxMNC0MMbiFcQ4aiGaAeuFNaMYIiyG0UFiTcqkNH8NUct_1CHCCDrxpEpzu3mP0enf7cvNQPD3fP96sngrHJRkKLpyQhFFZlw6sJ4ZTU5e-wlYZEMRzrqwBKyx3tMrU2jJTRStPhZKVYsfocjt3E_u3EdKg25Dyqo3poB-TZqRSkvNKlZle_KHrfoxd3m5SgjFRKZHV-U6NtoVab2JoTfzUP8fJQGyBi31KEfwvIVhPIeifEPQUgt6FkPuut32h831szXsfm1oP5rPpo4-mc2Ha498RX5SCi5w
Cites_doi 10.1007/s10916-014-0106-1
10.1111/stan.12237
10.7551/mitpress/1113.003.0008
10.1002/sim.2748
10.1111/j.1541-0420.2011.01715.x
10.1007/s00184-017-0638-8
10.1007/978-3-031-08564-2_3
10.1080/02664763.2020.1786676
10.1177/0962280213491641
10.1007/s00180-014-0527-9
10.1007/s00180-017-0781-8
10.1201/9780429032301
10.1007/s42519-022-00274-8
10.1002/sim.9363
10.1080/03610926.2014.964807
10.1007/s00180-024-01480-7
10.1080/10485252.2017.1404599
10.1177/09622802231210917
10.1016/j.csda.2006.06.017
10.1080/03610918.2022.2067876
10.1007/978-0-387-21606-5
10.1080/00949655.2016.1247843
10.1111/iwj.14001
10.1016/j.spl.2016.04.005
10.1002/sim.9904
10.1002/sim.9189
10.1080/15598608.2012.719803
10.1016/j.csda.2013.04.018
10.1002/sim.9739
10.1002/pst.1630
10.1007/s00180-021-01086-3
10.1007/s10985-010-9189-2
10.1007/s00180-019-00931-w
10.1080/03610918.2020.1819321
10.2307/2529620
10.1007/s00180-016-0660-8
10.1007/s00180-023-01389-7
ContentType Journal Article
Copyright 2024 Informa UK Limited, trading as Taylor & Francis Group 2024
2024 Informa UK Limited, trading as Taylor & Francis Group.
2024 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2024 Informa UK Limited, trading as Taylor & Francis Group 2024
– notice: 2024 Informa UK Limited, trading as Taylor & Francis Group.
– notice: 2024 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
NPM
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1080/02664763.2024.2418476
DatabaseName CrossRef
PubMed
Computer and Information Systems Abstracts
Technology Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Aerospace Database
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1360-0532
EndPage 1194
ExternalDocumentID 40303565
10_1080_02664763_2024_2418476
2418476
Genre Research Article
Journal Article
GrantInformation_xml – fundername: National Institute of General Medical Sciences
  grantid: 15GM150091
GroupedDBID .7F
.QJ
0BK
0R~
29J
2DF
30N
4.4
5GY
5VS
7WY
8FL
8VB
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFO
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
ADYSH
AEGXH
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIAGR
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
AKVCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMPGV
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBR
EBS
EBU
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
K60
K6~
KYCEM
LJTGL
M4Z
NA5
O9-
P2P
PQBIZ
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
ZL0
~S~
AAGDL
AAHIA
AAYXX
CITATION
NY~
07G
1TA
8C1
8FE
8FG
8G5
AAIKQ
AAKBW
ABJCF
ABUWG
ACAGQ
ACGEE
ADBBV
AEMOZ
AEUMN
AFKRA
AGCQS
AGLEN
AGROQ
AHMOU
AHQJS
AI.
ALCKM
AMEWO
AMVHM
AMXXU
ARAPS
AZQEC
BCCOT
BENPR
BEZIV
BGLVJ
BPHCQ
BPLKW
C06
CAG
CCPQU
COF
CRFIH
DMQIW
DWIFK
DWQXO
EBE
EBO
ECR
EJD
EMK
EPL
FRNLG
FYUFA
GNUQQ
GUQSH
HCIFZ
IVXBP
K1G
K6V
K7-
L6V
M0C
M2O
M7S
NHB
NPM
NUSFT
P62
PHGZM
PHGZT
PJZUB
PPXIY
PQBZA
PQGLB
PQQKQ
PRG
PROAC
PTHSS
QCRFL
RPM
TAQ
TASJS
TFMCV
TH9
TOXWX
UB9
UKHRP
UU8
V3K
V4Q
VH1
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c461t-45c561326d8cebf1a42ad8f90b7ae51f447baeb5b4c29c56bb86d8729f2576973
ISSN 0266-4763
IngestDate Wed Jul 02 04:52:46 EDT 2025
Wed Aug 13 05:01:54 EDT 2025
Mon Jul 21 06:01:44 EDT 2025
Tue Jul 01 05:07:19 EDT 2025
Mon Apr 28 04:10:35 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords multiple imputation
cross-validation
cure rate
62N02
Decision tree
EM algorithm
Language English
License 2024 Informa UK Limited, trading as Taylor & Francis Group.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c461t-45c561326d8cebf1a42ad8f90b7ae51f447baeb5b4c29c56bb86d8729f2576973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4467-8652
0000-0001-9864-9489
OpenAccessLink https://figshare.com/articles/journal_contribution/A_semiparametric_accelerated_failure_time-based_mixture_cure_tree/27284622
PMID 40303565
PQID 3195335975
PQPubID 32901
PageCount 18
ParticipantIDs informaworld_taylorfrancis_310_1080_02664763_2024_2418476
proquest_journals_3195335975
crossref_primary_10_1080_02664763_2024_2418476
pubmed_primary_40303565
proquest_miscellaneous_3197644978
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-26
PublicationDateYYYYMMDD 2025-04-26
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-26
  day: 26
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Abingdon
PublicationTitle Journal of applied statistics
PublicationTitleAlternate J Appl Stat
PublicationYear 2025
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References e_1_3_5_29_1
Xie Y. (e_1_3_5_37_1) 2021; 36
Pal S. (e_1_3_5_19_1) 2017; 87
e_1_3_5_26_1
Pal S. (e_1_3_5_27_1) 2023; 32
Pal S. (e_1_3_5_16_1) 2021; 40
Li P. (e_1_3_5_14_1) 2020; 35
Davies K. (e_1_3_5_11_1) 2021; 48
Pal S. (e_1_3_5_17_1) 2023; 17
Balakrishnan N. (e_1_3_5_6_1) 2015; 44
Zhang J. (e_1_3_5_38_1) 2007; 26
Cheng-Min C. (e_1_3_5_10_1) 2014; 38
Pal S. (e_1_3_5_24_1) 2018; 81
Wang P. (e_1_3_5_35_1) 2022; 41
Asano J. (e_1_3_5_2_1) 2014; 13
Rodrigues J. (e_1_3_5_31_1) 2011; 17
Chen T. (e_1_3_5_9_1) 2018; 30
e_1_3_5_15_1
e_1_3_5_13_1
Pal S. (e_1_3_5_25_1) 2022; 16
Balakrishnan N. (e_1_3_5_5_1) 2015; 30
e_1_3_5_34_1
Balakrishnan N. (e_1_3_5_4_1) 2013; 67
Treszoks J. (e_1_3_5_33_1) 2024; 53
Pal S. (e_1_3_5_21_1) 2021; 75
Zhang J. (e_1_3_5_39_1) 2007; 51
Breslow N.E. (e_1_3_5_8_1) 1974; 30
Pal S. (e_1_3_5_18_1) 2016; 116
Balakrishnan N. (e_1_3_5_3_1) 2012; 6
Treszoks J. (e_1_3_5_32_1) 2023; 42
Wang L. (e_1_3_5_36_1) 2012; 68
Pal S. (e_1_3_5_23_1) 2023; 42
Pal S. (e_1_3_5_20_1) 2017; 32
Balakrishnan N. (e_1_3_5_7_1) 2016; 25
Peng Y. (e_1_3_5_28_1) 2021
Hastie T. (e_1_3_5_12_1) 2001
Pal S. (e_1_3_5_22_1) 2022; 51
Ramires T.G. (e_1_3_5_30_1) 2018; 33
References_xml – volume: 38
  start-page: 106
  year: 2014
  ident: e_1_3_5_10_1
  article-title: Construction the model on the breast cancer survival analysis use support vector machine, logistic regression and decision tree
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-014-0106-1
– volume: 75
  start-page: 324
  year: 2021
  ident: e_1_3_5_21_1
  article-title: On the estimation of destructive cure rate model: A new study with exponentially weighted Poisson competing risks
  publication-title: Stat. Neerl.
  doi: 10.1111/stan.12237
– ident: e_1_3_5_29_1
  doi: 10.7551/mitpress/1113.003.0008
– volume: 26
  start-page: 3157
  year: 2007
  ident: e_1_3_5_38_1
  article-title: A new estimation method for the semiparametric accelerated failure time mixture cure model
  publication-title: Stat. Med.
  doi: 10.1002/sim.2748
– volume: 68
  start-page: 726
  year: 2012
  ident: e_1_3_5_36_1
  article-title: Two-component mixture cure rate model with spline estimated nonparametric components
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2011.01715.x
– volume: 81
  start-page: 143
  year: 2018
  ident: e_1_3_5_24_1
  article-title: An EM algorithm for the destructive COM-Poisson regression cure rate model
  publication-title: Metrika
  doi: 10.1007/s00184-017-0638-8
– ident: e_1_3_5_15_1
  doi: 10.1007/978-3-031-08564-2_3
– volume: 48
  start-page: 2112
  year: 2021
  ident: e_1_3_5_11_1
  article-title: Stochastic EM algorithm for generalized exponential cure rate model and an empirical study
  publication-title: J. Appl. Stat.
  doi: 10.1080/02664763.2020.1786676
– volume: 25
  start-page: 1535
  year: 2016
  ident: e_1_3_5_7_1
  article-title: Expectation maximization-based likelihood inference for flexible cure rate models with Weibull lifetimes
  publication-title: Stat. Methods Med. Res.
  doi: 10.1177/0962280213491641
– volume: 30
  start-page: 151
  year: 2015
  ident: e_1_3_5_5_1
  article-title: An EM algorithm for the estimation of parameters of a flexible cure rate model with generalized gamma lifetime and model discrimination using likelihood-and information-based methods
  publication-title: Comput. Stat.
  doi: 10.1007/s00180-014-0527-9
– volume: 33
  start-page: 709
  year: 2018
  ident: e_1_3_5_30_1
  article-title: Estimating nonlinear effects in the presence of cure fraction using a semi-parametric regression model
  publication-title: Comput. Stat.
  doi: 10.1007/s00180-017-0781-8
– volume-title: Cure Models: Methods, Applications and Implementation
  year: 2021
  ident: e_1_3_5_28_1
  doi: 10.1201/9780429032301
– volume: 16
  start-page: 48
  year: 2022
  ident: e_1_3_5_25_1
  article-title: A stochastic version of the EM algorithm for mixture cure model with exponentiated Weibull family of lifetimes
  publication-title: J. Stat. Theory Pract.
  doi: 10.1007/s42519-022-00274-8
– volume: 41
  start-page: 2427
  year: 2022
  ident: e_1_3_5_35_1
  article-title: A two-way flexible generalized gamma transformation cure rate model
  publication-title: Stat. Med.
  doi: 10.1002/sim.9363
– volume: 44
  start-page: 4007
  year: 2015
  ident: e_1_3_5_6_1
  article-title: Likelihood inference for flexible cure rate models with gamma lifetimes
  publication-title: Commun. Stat. – Theory Methods
  doi: 10.1080/03610926.2014.964807
– ident: e_1_3_5_34_1
  doi: 10.1007/s00180-024-01480-7
– volume: 17
  start-page: 2680
  year: 2023
  ident: e_1_3_5_17_1
  article-title: A semiparametric promotion time cure model with support vector machine
  publication-title: Ann. Appl. Stat.
– volume: 30
  start-page: 216
  year: 2018
  ident: e_1_3_5_9_1
  article-title: Mixture cure rate models with accelerated failures and nonparametric form of covariate effects
  publication-title: J. Nonparametr. Stat.
  doi: 10.1080/10485252.2017.1404599
– volume: 32
  start-page: 2405
  year: 2023
  ident: e_1_3_5_27_1
  article-title: A support vector machine-based cure rate model for interval censored data
  publication-title: Stat. Methods Med. Res.
  doi: 10.1177/09622802231210917
– volume: 51
  start-page: 4413
  year: 2007
  ident: e_1_3_5_39_1
  article-title: An alternative estimation method for the accelerated failure time frailty model
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2006.06.017
– volume: 53
  start-page: 2135
  year: 2024
  ident: e_1_3_5_33_1
  article-title: A destructive shifted Poisson cure model for interval censored data and an efficient estimation algorithm
  publication-title: Commun. Stat. Simul. Comput.
  doi: 10.1080/03610918.2022.2067876
– volume-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction
  year: 2001
  ident: e_1_3_5_12_1
  doi: 10.1007/978-0-387-21606-5
– volume: 87
  start-page: 1107
  year: 2017
  ident: e_1_3_5_19_1
  article-title: An EM type estimation procedure for the destructive exponentially weighted Poisson regression cure model under generalized gamma lifetime
  publication-title: J. Stat. Comput. Simul.
  doi: 10.1080/00949655.2016.1247843
– ident: e_1_3_5_13_1
  doi: 10.1111/iwj.14001
– volume: 116
  start-page: 9
  year: 2016
  ident: e_1_3_5_18_1
  article-title: Destructive negative binomial cure rate model and EM-based likelihood inference under Weibull lifetime
  publication-title: Stat. Probab. Lett.
  doi: 10.1016/j.spl.2016.04.005
– volume: 42
  start-page: 5113
  year: 2023
  ident: e_1_3_5_32_1
  article-title: On the estimation of interval censored destructive negative binomial cure model
  publication-title: Stat. Med.
  doi: 10.1002/sim.9904
– volume: 40
  start-page: 6387
  year: 2021
  ident: e_1_3_5_16_1
  article-title: A simplified stochastic EM algorithm for cure rate model with negative binomial competing risks: An application to breast cancer data
  publication-title: Stat. Med.
  doi: 10.1002/sim.9189
– volume: 6
  start-page: 698
  year: 2012
  ident: e_1_3_5_3_1
  article-title: EM algorithm-based likelihood estimation for some cure rate models
  publication-title: J. Stat. Theory Pract.
  doi: 10.1080/15598608.2012.719803
– volume: 67
  start-page: 41
  year: 2013
  ident: e_1_3_5_4_1
  article-title: Lognormal lifetimes and likelihood-based inference for flexible cure rate models based on COM-Poisson family
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2013.04.018
– volume: 42
  start-page: 2600
  year: 2023
  ident: e_1_3_5_23_1
  article-title: On the parameter estimation of Box-Cox transformation cure model
  publication-title: Stat. Med.
  doi: 10.1002/sim.9739
– volume: 13
  start-page: 357
  year: 2014
  ident: e_1_3_5_2_1
  article-title: Assessing the prediction accuracy of cure in the Cox proportional hazards cure model: An application to breast cancer data
  publication-title: Pharm. Stat.
  doi: 10.1002/pst.1630
– volume: 36
  start-page: 2467
  year: 2021
  ident: e_1_3_5_37_1
  article-title: Mixture cure rate models with neural network estimated nonparametric components
  publication-title: Comput. Stat.
  doi: 10.1007/s00180-021-01086-3
– volume: 17
  start-page: 333
  year: 2011
  ident: e_1_3_5_31_1
  article-title: Destructive weighted Poisson cure rate models
  publication-title: Lifetime Data Anal.
  doi: 10.1007/s10985-010-9189-2
– volume: 35
  start-page: 931
  year: 2020
  ident: e_1_3_5_14_1
  article-title: A support vector machine based semiparametric mixture cure model
  publication-title: Comput. Stat.
  doi: 10.1007/s00180-019-00931-w
– volume: 51
  start-page: 6866
  year: 2022
  ident: e_1_3_5_22_1
  article-title: A new non-linear conjugate gradient algorithm for destructive cure rate model and a simulation study: Illustration with negative binomial competing risks
  publication-title: Commun. Stat. Simul. Comput.
  doi: 10.1080/03610918.2020.1819321
– volume: 30
  start-page: 89
  year: 1974
  ident: e_1_3_5_8_1
  article-title: Covariate analysis of censored survival data
  publication-title: Biometrics
  doi: 10.2307/2529620
– volume: 32
  start-page: 429
  year: 2017
  ident: e_1_3_5_20_1
  article-title: Likelihood inference for the destructive exponentially weighted Poisson cure rate model with Weibull lifetime and an application to melanoma data
  publication-title: Comput. Stat.
  doi: 10.1007/s00180-016-0660-8
– ident: e_1_3_5_26_1
  doi: 10.1007/s00180-023-01389-7
SSID ssj0008153
Score 2.3839927
Snippet The mixture cure rate model (MCM) is the most widely used model for the analysis of survival data with a cured subgroup. In this context, the most common...
SourceID proquest
pubmed
crossref
informaworld
SourceType Aggregation Database
Index Database
Publisher
StartPage 1177
SubjectTerms Algorithms
Bone marrow
Classification
cross-validation
cure rate
Decision tree
Decision trees
EM algorithm
Failure times
Generalized linear models
Logit models
Mixtures
multiple imputation
Probability
Statistical models
Subgroups
Survival
Title A semiparametric accelerated failure time-based mixture cure tree
URI https://www.tandfonline.com/doi/abs/10.1080/02664763.2024.2418476
https://www.ncbi.nlm.nih.gov/pubmed/40303565
https://www.proquest.com/docview/3195335975
https://www.proquest.com/docview/3197644978
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BeykHBOUVKMhI3CJH2ZcfR4uHIqRyaatWXKx9WfIhaZU4gPj1zHjXjg3hUS5WtFmvvZ5v57GzM0PIG24oTxzlsZzrNBbMzeO8Qp8rp4bZxFJrMXb49FOyuBAfr-TVzoPfRpc0ema-740r-R-qQhvQFaNkb0HZflBogN9AX7gCheH6TzQuphu3rDF79xILY5mpMgbECGZ_sNNK1XjkvK0eH6OwstNl_a11GJi2fe3Gx4B2qqkKqilGG_lEzj0uMH59477WfiP0st5YP69Qi8Uf9Pmy7pn9mdp65w7ItyZAIGwyMIn-Eh_JHngRyPFYdLzIeV7JE_Sj8xEzlWwAmiFnROfwQMpS6msb_8LBw5FHeB4-Dgx4JmagZYAQ3ZMx-ydJ1p8vpF3i0zBMicOUYZi75JCBTQFc_LBYvPt82QvujPqkpd1cu4AvTMW-731Gqswo0e3vzZVWbTl_QO4HokaFB89Dcsetjsm90z5Z7-aYHJ31ZH5EiiIaYyoaYCoKmIp2mIoCpiLTtgOmHpOLD-_P3y7iUGYjNiKhTSykQSuSJTYzTldUCaZsVuWweJWTtBIi1cppqYVhOXTVOoOuYJRVaKzmKX9CDlbXK_eMRFoo0E9TZyXXYEpLnc0Tk7lKKDCEOXMTMuu-WHnjs6mUf6TVhOTD71o27TZW5WvOlPwv9550RCjDosVb8Dw1WNFyQl73fwNLRT-ZWrnrbdsnBTMhT7MJeeqJ17-tAKHIwQh6ftuZvCBHu4V1Qg6a9da9BH220a8CDn8AgKiWJw
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5ROACHltLXFtoGqVdv42eS4woVbSm7J5C4RX5Kq2qXCrIS6q_vTB4rqIR64Jp4Isfj8cxnj78B-Co9lyZyyXTuCqZEzFmV6MxVci-CCTwEujs8m5vplTq_1tcP7sJQWiVh6NQRRbRrNRk3bUYPKXHfEDcYhYaB8E6oMfogXGLNC9jRlSnIOGU-36zGJe-YKFGEkcxwi-epzzzyT4_YS5-OQVtfdPYK_PAXXQrKr_G6cWP_5x-Cx-f95gG87EPVbNLNrdewFVeHsD_b8LzeHcIexaod1fMbmEyyu7hcEJn4kup0-cx6j16NyChCluyCMuAzKmbPyHeGbLm4p_OLzLfPb2N8C1dn3y9Pp6yv0MC8MrxhSnsCIMKE0keXuFXChjJVqHcbNU9KFc5Gp53yosKmzpXYFOP5RDinKuQ72F7drOIHyJyyGNoUMWjpEIVpV-bGlzEpixhKijiC8aCX-ndHxFHzgd-0H6iaBqruB2oE1UPt1U27A5K6ciW1_I_s8aDqurdpEqFUXARgegQnm9dojXTEYlfxZt22KTDCRGg-gvfdFNn0VuF6KjF-_viMjn2B3enl7KK--DH_eQR7gooR54oJcwzbze06fsIIqXGfWxP4C57vAOc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VKiF6gJbSsi2lQerVS_yIkxxXpStKy4oDSNwiP6UV2gWxWani1zOTx6ogIQ5cEzuyPZ7HF4-_AfghHZc6cMmy1OZMiZCyMtKZq-ROeO2593R3-GyiTy7V6VXWZxMuurRKwtCxJYpobDUp962PfUbcEcIGrVAvEN0JNUQXhBZWr8FbTYd8dIsjnayMccFbIkrswqhPf4nnuc88ck-PyEufD0EbVzTeBttPos1AuR4uazt090_4HV81y_ew1QWqyajdWR_gTZjvwLuzFcvrYgc2KVJtiZ4_wmiULMJsSlTiM6rS5RLjHPo0oqLwSTRTyn9PqJQ9I8_pk9n0H51eJK55fhfCLlyOf138PGFdfQbmlOY1U5kj-CG0L1ywkRsljC9iiVI3IeNRqdyaYDOrnCixqbUFNsVoPhLKKXP5CdbnN_OwB4lVBgObPPhMWsRgmS1S7YoQlUEEJUUYwLAXS3Xb0nBUvGc37RaqooWquoUaQPm_8Kq6-f8R22IllXyh734v6arTaOpCibgIv7IBHK5eoy7SAYuZh5tl0ybH-BKB-QA-tztkNVqF1lRi9PzlFQP7Dhvnx-Pq7-_Jn6-wKagScaqY0PuwXt8twzcMj2p70CjAA2mb_3w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+semiparametric+accelerated+failure+time-based+mixture+cure+tree&rft.jtitle=Journal+of+applied+statistics&rft.au=Aselisewine%2C+Wisdom&rft.au=Pal%2C+Suvra&rft.au=Saulo%2C+Helton&rft.date=2025-04-26&rft.issn=0266-4763&rft.eissn=1360-0532&rft.volume=52&rft.issue=6&rft.spage=1177&rft.epage=1194&rft_id=info:doi/10.1080%2F02664763.2024.2418476&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_02664763_2024_2418476
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-4763&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-4763&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-4763&client=summon