A semiparametric accelerated failure time-based mixture cure tree
The mixture cure rate model (MCM) is the most widely used model for the analysis of survival data with a cured subgroup. In this context, the most common strategy to model the cure probability is to assume a generalized linear model with a known link function, such as the logit link function. Howeve...
Saved in:
Published in | Journal of applied statistics Vol. 52; no. 6; pp. 1177 - 1194 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Taylor & Francis
26.04.2025
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0266-4763 1360-0532 |
DOI | 10.1080/02664763.2024.2418476 |
Cover
Loading…
Abstract | The mixture cure rate model (MCM) is the most widely used model for the analysis of survival data with a cured subgroup. In this context, the most common strategy to model the cure probability is to assume a generalized linear model with a known link function, such as the logit link function. However, the logit model can only capture simple effects of covariates on the cure probability. In this article, we propose a new MCM where the cure probability is modeled using a decision tree-based classifier and the survival distribution of the uncured is modeled using an accelerated failure time structure. To estimate the model parameters, we develop an expectation maximization algorithm. Our simulation study shows that the proposed model performs better in capturing nonlinear classification boundaries when compared to the logit-based MCM and the spline-based MCM. This results in more accurate and precise estimates of the cured probabilities, which in-turn results in improved predictive accuracy of cure. We further show that capturing nonlinear classification boundary also improves the estimation results corresponding to the survival distribution of the uncured subjects. Finally, we apply our proposed model and the EM algorithm to analyze an existing bone marrow transplant data. |
---|---|
AbstractList | The mixture cure rate model (MCM) is the most widely used model for the analysis of survival data with a cured subgroup. In this context, the most common strategy to model the cure probability is to assume a generalized linear model with a known link function, such as the logit link function. However, the logit model can only capture simple effects of covariates on the cure probability. In this article, we propose a new MCM where the cure probability is modeled using a decision tree-based classifier and the survival distribution of the uncured is modeled using an accelerated failure time structure. To estimate the model parameters, we develop an expectation maximization algorithm. Our simulation study shows that the proposed model performs better in capturing nonlinear classification boundaries when compared to the logit-based MCM and the spline-based MCM. This results in more accurate and precise estimates of the cured probabilities, which in-turn results in improved predictive accuracy of cure. We further show that capturing nonlinear classification boundary also improves the estimation results corresponding to the survival distribution of the uncured subjects. Finally, we apply our proposed model and the EM algorithm to analyze an existing bone marrow transplant data. The mixture cure rate model (MCM) is the most widely used model for the analysis of survival data with a cured subgroup. In this context, the most common strategy to model the cure probability is to assume a generalized linear model with a known link function, such as the logit link function. However, the logit model can only capture simple effects of covariates on the cure probability. In this article, we propose a new MCM where the cure probability is modeled using a decision tree-based classifier and the survival distribution of the uncured is modeled using an accelerated failure time structure. To estimate the model parameters, we develop an expectation maximization algorithm. Our simulation study shows that the proposed model performs better in capturing nonlinear classification boundaries when compared to the logit-based MCM and the spline-based MCM. This results in more accurate and precise estimates of the cured probabilities, which in-turn results in improved predictive accuracy of cure. We further show that capturing nonlinear classification boundary also improves the estimation results corresponding to the survival distribution of the uncured subjects. Finally, we apply our proposed model and the EM algorithm to analyze an existing bone marrow transplant data.The mixture cure rate model (MCM) is the most widely used model for the analysis of survival data with a cured subgroup. In this context, the most common strategy to model the cure probability is to assume a generalized linear model with a known link function, such as the logit link function. However, the logit model can only capture simple effects of covariates on the cure probability. In this article, we propose a new MCM where the cure probability is modeled using a decision tree-based classifier and the survival distribution of the uncured is modeled using an accelerated failure time structure. To estimate the model parameters, we develop an expectation maximization algorithm. Our simulation study shows that the proposed model performs better in capturing nonlinear classification boundaries when compared to the logit-based MCM and the spline-based MCM. This results in more accurate and precise estimates of the cured probabilities, which in-turn results in improved predictive accuracy of cure. We further show that capturing nonlinear classification boundary also improves the estimation results corresponding to the survival distribution of the uncured subjects. Finally, we apply our proposed model and the EM algorithm to analyze an existing bone marrow transplant data. |
Author | Saulo, Helton Aselisewine, Wisdom Pal, Suvra |
Author_xml | – sequence: 1 givenname: Wisdom surname: Aselisewine fullname: Aselisewine, Wisdom organization: University of Texas at Arlington – sequence: 2 givenname: Suvra orcidid: 0000-0001-9864-9489 surname: Pal fullname: Pal, Suvra email: suvra.pal@uta.edu organization: University of Texas at Arlington – sequence: 3 givenname: Helton orcidid: 0000-0002-4467-8652 surname: Saulo fullname: Saulo, Helton organization: Universidade de Brasília |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40303565$$D View this record in MEDLINE/PubMed |
BookMark | eNp90UtLAzEQB_Agiq2Pj6AUvHjZmnd2bxbxBYIXPYckO4GUfdRkF_Xbm7XVgwdPIcNvhmH-R2i_6ztA6IzgJcElvsJUSq4kW1JM-ZJyUubfHpoTJnGBBaP7aD6ZYkIzdJTSGmNcEsEO0YxjhpmQYo5Wq0WCNmxMNC0MMbiFcQ4aiGaAeuFNaMYIiyG0UFiTcqkNH8NUct_1CHCCDrxpEpzu3mP0enf7cvNQPD3fP96sngrHJRkKLpyQhFFZlw6sJ4ZTU5e-wlYZEMRzrqwBKyx3tMrU2jJTRStPhZKVYsfocjt3E_u3EdKg25Dyqo3poB-TZqRSkvNKlZle_KHrfoxd3m5SgjFRKZHV-U6NtoVab2JoTfzUP8fJQGyBi31KEfwvIVhPIeifEPQUgt6FkPuut32h831szXsfm1oP5rPpo4-mc2Ha498RX5SCi5w |
Cites_doi | 10.1007/s10916-014-0106-1 10.1111/stan.12237 10.7551/mitpress/1113.003.0008 10.1002/sim.2748 10.1111/j.1541-0420.2011.01715.x 10.1007/s00184-017-0638-8 10.1007/978-3-031-08564-2_3 10.1080/02664763.2020.1786676 10.1177/0962280213491641 10.1007/s00180-014-0527-9 10.1007/s00180-017-0781-8 10.1201/9780429032301 10.1007/s42519-022-00274-8 10.1002/sim.9363 10.1080/03610926.2014.964807 10.1007/s00180-024-01480-7 10.1080/10485252.2017.1404599 10.1177/09622802231210917 10.1016/j.csda.2006.06.017 10.1080/03610918.2022.2067876 10.1007/978-0-387-21606-5 10.1080/00949655.2016.1247843 10.1111/iwj.14001 10.1016/j.spl.2016.04.005 10.1002/sim.9904 10.1002/sim.9189 10.1080/15598608.2012.719803 10.1016/j.csda.2013.04.018 10.1002/sim.9739 10.1002/pst.1630 10.1007/s00180-021-01086-3 10.1007/s10985-010-9189-2 10.1007/s00180-019-00931-w 10.1080/03610918.2020.1819321 10.2307/2529620 10.1007/s00180-016-0660-8 10.1007/s00180-023-01389-7 |
ContentType | Journal Article |
Copyright | 2024 Informa UK Limited, trading as Taylor & Francis Group 2024 2024 Informa UK Limited, trading as Taylor & Francis Group. 2024 Informa UK Limited, trading as Taylor & Francis Group |
Copyright_xml | – notice: 2024 Informa UK Limited, trading as Taylor & Francis Group 2024 – notice: 2024 Informa UK Limited, trading as Taylor & Francis Group. – notice: 2024 Informa UK Limited, trading as Taylor & Francis Group |
DBID | AAYXX CITATION NPM 7SC 8FD H8D JQ2 L7M L~C L~D 7X8 |
DOI | 10.1080/02664763.2024.2418476 |
DatabaseName | CrossRef PubMed Computer and Information Systems Abstracts Technology Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Aerospace Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1360-0532 |
EndPage | 1194 |
ExternalDocumentID | 40303565 10_1080_02664763_2024_2418476 2418476 |
Genre | Research Article Journal Article |
GrantInformation_xml | – fundername: National Institute of General Medical Sciences grantid: 15GM150091 |
GroupedDBID | .7F .QJ 0BK 0R~ 29J 2DF 30N 4.4 5GY 5VS 7WY 8FL 8VB AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFO ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE ADYSH AEGXH AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIAGR AIJEM AIYEW AJWEG AKBVH AKOOK AKVCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALQZU AMPGV AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBR EBS EBU E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P K60 K6~ KYCEM LJTGL M4Z NA5 O9- P2P PQBIZ QWB RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TWF UT5 UU3 ZGOLN ZL0 ~S~ AAGDL AAHIA AAYXX CITATION NY~ 07G 1TA 8C1 8FE 8FG 8G5 AAIKQ AAKBW ABJCF ABUWG ACAGQ ACGEE ADBBV AEMOZ AEUMN AFKRA AGCQS AGLEN AGROQ AHMOU AHQJS AI. ALCKM AMEWO AMVHM AMXXU ARAPS AZQEC BCCOT BENPR BEZIV BGLVJ BPHCQ BPLKW C06 CAG CCPQU COF CRFIH DMQIW DWIFK DWQXO EBE EBO ECR EJD EMK EPL FRNLG FYUFA GNUQQ GUQSH HCIFZ IVXBP K1G K6V K7- L6V M0C M2O M7S NHB NPM NUSFT P62 PHGZM PHGZT PJZUB PPXIY PQBZA PQGLB PQQKQ PRG PROAC PTHSS QCRFL RPM TAQ TASJS TFMCV TH9 TOXWX UB9 UKHRP UU8 V3K V4Q VH1 7SC 8FD H8D JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c461t-45c561326d8cebf1a42ad8f90b7ae51f447baeb5b4c29c56bb86d8729f2576973 |
ISSN | 0266-4763 |
IngestDate | Wed Jul 02 04:52:46 EDT 2025 Wed Aug 13 05:01:54 EDT 2025 Mon Jul 21 06:01:44 EDT 2025 Tue Jul 01 05:07:19 EDT 2025 Mon Apr 28 04:10:35 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | multiple imputation cross-validation cure rate 62N02 Decision tree EM algorithm |
Language | English |
License | 2024 Informa UK Limited, trading as Taylor & Francis Group. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c461t-45c561326d8cebf1a42ad8f90b7ae51f447baeb5b4c29c56bb86d8729f2576973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4467-8652 0000-0001-9864-9489 |
OpenAccessLink | https://figshare.com/articles/journal_contribution/A_semiparametric_accelerated_failure_time-based_mixture_cure_tree/27284622 |
PMID | 40303565 |
PQID | 3195335975 |
PQPubID | 32901 |
PageCount | 18 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_02664763_2024_2418476 proquest_journals_3195335975 crossref_primary_10_1080_02664763_2024_2418476 pubmed_primary_40303565 proquest_miscellaneous_3197644978 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-04-26 |
PublicationDateYYYYMMDD | 2025-04-26 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-26 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Abingdon |
PublicationTitle | Journal of applied statistics |
PublicationTitleAlternate | J Appl Stat |
PublicationYear | 2025 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | e_1_3_5_29_1 Xie Y. (e_1_3_5_37_1) 2021; 36 Pal S. (e_1_3_5_19_1) 2017; 87 e_1_3_5_26_1 Pal S. (e_1_3_5_27_1) 2023; 32 Pal S. (e_1_3_5_16_1) 2021; 40 Li P. (e_1_3_5_14_1) 2020; 35 Davies K. (e_1_3_5_11_1) 2021; 48 Pal S. (e_1_3_5_17_1) 2023; 17 Balakrishnan N. (e_1_3_5_6_1) 2015; 44 Zhang J. (e_1_3_5_38_1) 2007; 26 Cheng-Min C. (e_1_3_5_10_1) 2014; 38 Pal S. (e_1_3_5_24_1) 2018; 81 Wang P. (e_1_3_5_35_1) 2022; 41 Asano J. (e_1_3_5_2_1) 2014; 13 Rodrigues J. (e_1_3_5_31_1) 2011; 17 Chen T. (e_1_3_5_9_1) 2018; 30 e_1_3_5_15_1 e_1_3_5_13_1 Pal S. (e_1_3_5_25_1) 2022; 16 Balakrishnan N. (e_1_3_5_5_1) 2015; 30 e_1_3_5_34_1 Balakrishnan N. (e_1_3_5_4_1) 2013; 67 Treszoks J. (e_1_3_5_33_1) 2024; 53 Pal S. (e_1_3_5_21_1) 2021; 75 Zhang J. (e_1_3_5_39_1) 2007; 51 Breslow N.E. (e_1_3_5_8_1) 1974; 30 Pal S. (e_1_3_5_18_1) 2016; 116 Balakrishnan N. (e_1_3_5_3_1) 2012; 6 Treszoks J. (e_1_3_5_32_1) 2023; 42 Wang L. (e_1_3_5_36_1) 2012; 68 Pal S. (e_1_3_5_23_1) 2023; 42 Pal S. (e_1_3_5_20_1) 2017; 32 Balakrishnan N. (e_1_3_5_7_1) 2016; 25 Peng Y. (e_1_3_5_28_1) 2021 Hastie T. (e_1_3_5_12_1) 2001 Pal S. (e_1_3_5_22_1) 2022; 51 Ramires T.G. (e_1_3_5_30_1) 2018; 33 |
References_xml | – volume: 38 start-page: 106 year: 2014 ident: e_1_3_5_10_1 article-title: Construction the model on the breast cancer survival analysis use support vector machine, logistic regression and decision tree publication-title: J. Med. Syst. doi: 10.1007/s10916-014-0106-1 – volume: 75 start-page: 324 year: 2021 ident: e_1_3_5_21_1 article-title: On the estimation of destructive cure rate model: A new study with exponentially weighted Poisson competing risks publication-title: Stat. Neerl. doi: 10.1111/stan.12237 – ident: e_1_3_5_29_1 doi: 10.7551/mitpress/1113.003.0008 – volume: 26 start-page: 3157 year: 2007 ident: e_1_3_5_38_1 article-title: A new estimation method for the semiparametric accelerated failure time mixture cure model publication-title: Stat. Med. doi: 10.1002/sim.2748 – volume: 68 start-page: 726 year: 2012 ident: e_1_3_5_36_1 article-title: Two-component mixture cure rate model with spline estimated nonparametric components publication-title: Biometrics doi: 10.1111/j.1541-0420.2011.01715.x – volume: 81 start-page: 143 year: 2018 ident: e_1_3_5_24_1 article-title: An EM algorithm for the destructive COM-Poisson regression cure rate model publication-title: Metrika doi: 10.1007/s00184-017-0638-8 – ident: e_1_3_5_15_1 doi: 10.1007/978-3-031-08564-2_3 – volume: 48 start-page: 2112 year: 2021 ident: e_1_3_5_11_1 article-title: Stochastic EM algorithm for generalized exponential cure rate model and an empirical study publication-title: J. Appl. Stat. doi: 10.1080/02664763.2020.1786676 – volume: 25 start-page: 1535 year: 2016 ident: e_1_3_5_7_1 article-title: Expectation maximization-based likelihood inference for flexible cure rate models with Weibull lifetimes publication-title: Stat. Methods Med. Res. doi: 10.1177/0962280213491641 – volume: 30 start-page: 151 year: 2015 ident: e_1_3_5_5_1 article-title: An EM algorithm for the estimation of parameters of a flexible cure rate model with generalized gamma lifetime and model discrimination using likelihood-and information-based methods publication-title: Comput. Stat. doi: 10.1007/s00180-014-0527-9 – volume: 33 start-page: 709 year: 2018 ident: e_1_3_5_30_1 article-title: Estimating nonlinear effects in the presence of cure fraction using a semi-parametric regression model publication-title: Comput. Stat. doi: 10.1007/s00180-017-0781-8 – volume-title: Cure Models: Methods, Applications and Implementation year: 2021 ident: e_1_3_5_28_1 doi: 10.1201/9780429032301 – volume: 16 start-page: 48 year: 2022 ident: e_1_3_5_25_1 article-title: A stochastic version of the EM algorithm for mixture cure model with exponentiated Weibull family of lifetimes publication-title: J. Stat. Theory Pract. doi: 10.1007/s42519-022-00274-8 – volume: 41 start-page: 2427 year: 2022 ident: e_1_3_5_35_1 article-title: A two-way flexible generalized gamma transformation cure rate model publication-title: Stat. Med. doi: 10.1002/sim.9363 – volume: 44 start-page: 4007 year: 2015 ident: e_1_3_5_6_1 article-title: Likelihood inference for flexible cure rate models with gamma lifetimes publication-title: Commun. Stat. – Theory Methods doi: 10.1080/03610926.2014.964807 – ident: e_1_3_5_34_1 doi: 10.1007/s00180-024-01480-7 – volume: 17 start-page: 2680 year: 2023 ident: e_1_3_5_17_1 article-title: A semiparametric promotion time cure model with support vector machine publication-title: Ann. Appl. Stat. – volume: 30 start-page: 216 year: 2018 ident: e_1_3_5_9_1 article-title: Mixture cure rate models with accelerated failures and nonparametric form of covariate effects publication-title: J. Nonparametr. Stat. doi: 10.1080/10485252.2017.1404599 – volume: 32 start-page: 2405 year: 2023 ident: e_1_3_5_27_1 article-title: A support vector machine-based cure rate model for interval censored data publication-title: Stat. Methods Med. Res. doi: 10.1177/09622802231210917 – volume: 51 start-page: 4413 year: 2007 ident: e_1_3_5_39_1 article-title: An alternative estimation method for the accelerated failure time frailty model publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2006.06.017 – volume: 53 start-page: 2135 year: 2024 ident: e_1_3_5_33_1 article-title: A destructive shifted Poisson cure model for interval censored data and an efficient estimation algorithm publication-title: Commun. Stat. Simul. Comput. doi: 10.1080/03610918.2022.2067876 – volume-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction year: 2001 ident: e_1_3_5_12_1 doi: 10.1007/978-0-387-21606-5 – volume: 87 start-page: 1107 year: 2017 ident: e_1_3_5_19_1 article-title: An EM type estimation procedure for the destructive exponentially weighted Poisson regression cure model under generalized gamma lifetime publication-title: J. Stat. Comput. Simul. doi: 10.1080/00949655.2016.1247843 – ident: e_1_3_5_13_1 doi: 10.1111/iwj.14001 – volume: 116 start-page: 9 year: 2016 ident: e_1_3_5_18_1 article-title: Destructive negative binomial cure rate model and EM-based likelihood inference under Weibull lifetime publication-title: Stat. Probab. Lett. doi: 10.1016/j.spl.2016.04.005 – volume: 42 start-page: 5113 year: 2023 ident: e_1_3_5_32_1 article-title: On the estimation of interval censored destructive negative binomial cure model publication-title: Stat. Med. doi: 10.1002/sim.9904 – volume: 40 start-page: 6387 year: 2021 ident: e_1_3_5_16_1 article-title: A simplified stochastic EM algorithm for cure rate model with negative binomial competing risks: An application to breast cancer data publication-title: Stat. Med. doi: 10.1002/sim.9189 – volume: 6 start-page: 698 year: 2012 ident: e_1_3_5_3_1 article-title: EM algorithm-based likelihood estimation for some cure rate models publication-title: J. Stat. Theory Pract. doi: 10.1080/15598608.2012.719803 – volume: 67 start-page: 41 year: 2013 ident: e_1_3_5_4_1 article-title: Lognormal lifetimes and likelihood-based inference for flexible cure rate models based on COM-Poisson family publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2013.04.018 – volume: 42 start-page: 2600 year: 2023 ident: e_1_3_5_23_1 article-title: On the parameter estimation of Box-Cox transformation cure model publication-title: Stat. Med. doi: 10.1002/sim.9739 – volume: 13 start-page: 357 year: 2014 ident: e_1_3_5_2_1 article-title: Assessing the prediction accuracy of cure in the Cox proportional hazards cure model: An application to breast cancer data publication-title: Pharm. Stat. doi: 10.1002/pst.1630 – volume: 36 start-page: 2467 year: 2021 ident: e_1_3_5_37_1 article-title: Mixture cure rate models with neural network estimated nonparametric components publication-title: Comput. Stat. doi: 10.1007/s00180-021-01086-3 – volume: 17 start-page: 333 year: 2011 ident: e_1_3_5_31_1 article-title: Destructive weighted Poisson cure rate models publication-title: Lifetime Data Anal. doi: 10.1007/s10985-010-9189-2 – volume: 35 start-page: 931 year: 2020 ident: e_1_3_5_14_1 article-title: A support vector machine based semiparametric mixture cure model publication-title: Comput. Stat. doi: 10.1007/s00180-019-00931-w – volume: 51 start-page: 6866 year: 2022 ident: e_1_3_5_22_1 article-title: A new non-linear conjugate gradient algorithm for destructive cure rate model and a simulation study: Illustration with negative binomial competing risks publication-title: Commun. Stat. Simul. Comput. doi: 10.1080/03610918.2020.1819321 – volume: 30 start-page: 89 year: 1974 ident: e_1_3_5_8_1 article-title: Covariate analysis of censored survival data publication-title: Biometrics doi: 10.2307/2529620 – volume: 32 start-page: 429 year: 2017 ident: e_1_3_5_20_1 article-title: Likelihood inference for the destructive exponentially weighted Poisson cure rate model with Weibull lifetime and an application to melanoma data publication-title: Comput. Stat. doi: 10.1007/s00180-016-0660-8 – ident: e_1_3_5_26_1 doi: 10.1007/s00180-023-01389-7 |
SSID | ssj0008153 |
Score | 2.3839927 |
Snippet | The mixture cure rate model (MCM) is the most widely used model for the analysis of survival data with a cured subgroup. In this context, the most common... |
SourceID | proquest pubmed crossref informaworld |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1177 |
SubjectTerms | Algorithms Bone marrow Classification cross-validation cure rate Decision tree Decision trees EM algorithm Failure times Generalized linear models Logit models Mixtures multiple imputation Probability Statistical models Subgroups Survival |
Title | A semiparametric accelerated failure time-based mixture cure tree |
URI | https://www.tandfonline.com/doi/abs/10.1080/02664763.2024.2418476 https://www.ncbi.nlm.nih.gov/pubmed/40303565 https://www.proquest.com/docview/3195335975 https://www.proquest.com/docview/3197644978 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BeykHBOUVKMhI3CJH2ZcfR4uHIqRyaatWXKx9WfIhaZU4gPj1zHjXjg3hUS5WtFmvvZ5v57GzM0PIG24oTxzlsZzrNBbMzeO8Qp8rp4bZxFJrMXb49FOyuBAfr-TVzoPfRpc0ema-740r-R-qQhvQFaNkb0HZflBogN9AX7gCheH6TzQuphu3rDF79xILY5mpMgbECGZ_sNNK1XjkvK0eH6OwstNl_a11GJi2fe3Gx4B2qqkKqilGG_lEzj0uMH59477WfiP0st5YP69Qi8Uf9Pmy7pn9mdp65w7ItyZAIGwyMIn-Eh_JHngRyPFYdLzIeV7JE_Sj8xEzlWwAmiFnROfwQMpS6msb_8LBw5FHeB4-Dgx4JmagZYAQ3ZMx-ydJ1p8vpF3i0zBMicOUYZi75JCBTQFc_LBYvPt82QvujPqkpd1cu4AvTMW-731Gqswo0e3vzZVWbTl_QO4HokaFB89Dcsetjsm90z5Z7-aYHJ31ZH5EiiIaYyoaYCoKmIp2mIoCpiLTtgOmHpOLD-_P3y7iUGYjNiKhTSykQSuSJTYzTldUCaZsVuWweJWTtBIi1cppqYVhOXTVOoOuYJRVaKzmKX9CDlbXK_eMRFoo0E9TZyXXYEpLnc0Tk7lKKDCEOXMTMuu-WHnjs6mUf6TVhOTD71o27TZW5WvOlPwv9550RCjDosVb8Dw1WNFyQl73fwNLRT-ZWrnrbdsnBTMhT7MJeeqJ17-tAKHIwQh6ftuZvCBHu4V1Qg6a9da9BH220a8CDn8AgKiWJw |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5ROACHltLXFtoGqVdv42eS4woVbSm7J5C4RX5Kq2qXCrIS6q_vTB4rqIR64Jp4Isfj8cxnj78B-Co9lyZyyXTuCqZEzFmV6MxVci-CCTwEujs8m5vplTq_1tcP7sJQWiVh6NQRRbRrNRk3bUYPKXHfEDcYhYaB8E6oMfogXGLNC9jRlSnIOGU-36zGJe-YKFGEkcxwi-epzzzyT4_YS5-OQVtfdPYK_PAXXQrKr_G6cWP_5x-Cx-f95gG87EPVbNLNrdewFVeHsD_b8LzeHcIexaod1fMbmEyyu7hcEJn4kup0-cx6j16NyChCluyCMuAzKmbPyHeGbLm4p_OLzLfPb2N8C1dn3y9Pp6yv0MC8MrxhSnsCIMKE0keXuFXChjJVqHcbNU9KFc5Gp53yosKmzpXYFOP5RDinKuQ72F7drOIHyJyyGNoUMWjpEIVpV-bGlzEpixhKijiC8aCX-ndHxFHzgd-0H6iaBqruB2oE1UPt1U27A5K6ciW1_I_s8aDqurdpEqFUXARgegQnm9dojXTEYlfxZt22KTDCRGg-gvfdFNn0VuF6KjF-_viMjn2B3enl7KK--DH_eQR7gooR54oJcwzbze06fsIIqXGfWxP4C57vAOc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VKiF6gJbSsi2lQerVS_yIkxxXpStKy4oDSNwiP6UV2gWxWani1zOTx6ogIQ5cEzuyPZ7HF4-_AfghHZc6cMmy1OZMiZCyMtKZq-ROeO2593R3-GyiTy7V6VXWZxMuurRKwtCxJYpobDUp962PfUbcEcIGrVAvEN0JNUQXhBZWr8FbTYd8dIsjnayMccFbIkrswqhPf4nnuc88ck-PyEufD0EbVzTeBttPos1AuR4uazt090_4HV81y_ew1QWqyajdWR_gTZjvwLuzFcvrYgc2KVJtiZ4_wmiULMJsSlTiM6rS5RLjHPo0oqLwSTRTyn9PqJQ9I8_pk9n0H51eJK55fhfCLlyOf138PGFdfQbmlOY1U5kj-CG0L1ywkRsljC9iiVI3IeNRqdyaYDOrnCixqbUFNsVoPhLKKXP5CdbnN_OwB4lVBgObPPhMWsRgmS1S7YoQlUEEJUUYwLAXS3Xb0nBUvGc37RaqooWquoUaQPm_8Kq6-f8R22IllXyh734v6arTaOpCibgIv7IBHK5eoy7SAYuZh5tl0ybH-BKB-QA-tztkNVqF1lRi9PzlFQP7Dhvnx-Pq7-_Jn6-wKagScaqY0PuwXt8twzcMj2p70CjAA2mb_3w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+semiparametric+accelerated+failure+time-based+mixture+cure+tree&rft.jtitle=Journal+of+applied+statistics&rft.au=Aselisewine%2C+Wisdom&rft.au=Pal%2C+Suvra&rft.au=Saulo%2C+Helton&rft.date=2025-04-26&rft.issn=0266-4763&rft.eissn=1360-0532&rft.volume=52&rft.issue=6&rft.spage=1177&rft.epage=1194&rft_id=info:doi/10.1080%2F02664763.2024.2418476&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_02664763_2024_2418476 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-4763&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-4763&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-4763&client=summon |