A semiparametric accelerated failure time-based mixture cure tree

The mixture cure rate model (MCM) is the most widely used model for the analysis of survival data with a cured subgroup. In this context, the most common strategy to model the cure probability is to assume a generalized linear model with a known link function, such as the logit link function. Howeve...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied statistics Vol. 52; no. 6; pp. 1177 - 1194
Main Authors Aselisewine, Wisdom, Pal, Suvra, Saulo, Helton
Format Journal Article
LanguageEnglish
Published England Taylor & Francis 26.04.2025
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The mixture cure rate model (MCM) is the most widely used model for the analysis of survival data with a cured subgroup. In this context, the most common strategy to model the cure probability is to assume a generalized linear model with a known link function, such as the logit link function. However, the logit model can only capture simple effects of covariates on the cure probability. In this article, we propose a new MCM where the cure probability is modeled using a decision tree-based classifier and the survival distribution of the uncured is modeled using an accelerated failure time structure. To estimate the model parameters, we develop an expectation maximization algorithm. Our simulation study shows that the proposed model performs better in capturing nonlinear classification boundaries when compared to the logit-based MCM and the spline-based MCM. This results in more accurate and precise estimates of the cured probabilities, which in-turn results in improved predictive accuracy of cure. We further show that capturing nonlinear classification boundary also improves the estimation results corresponding to the survival distribution of the uncured subjects. Finally, we apply our proposed model and the EM algorithm to analyze an existing bone marrow transplant data.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0266-4763
1360-0532
DOI:10.1080/02664763.2024.2418476