Comparisons of Performance Potentials of Silicon Nanowire and Graphene Nanoribbon MOSFETs Considering First-Principles Bandstructure Effects

In this paper, we investigate the performance potentials of silicon nanowire (SNW) and semiconducting graphene nanoribbon (GNR) MOSFETs by using first-principles bandstructures and ballistic current estimation based on the ¿top-of-the-barrier¿ model. As a result, we found that SNW-MOSFETs display a...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on electron devices Vol. 57; no. 2; pp. 406 - 414
Main Authors Tsuchiya, H., Ando, H., Sawamoto, S., Maegawa, T., Hara, T., Yao, H., Ogawa, M.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.02.2010
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, we investigate the performance potentials of silicon nanowire (SNW) and semiconducting graphene nanoribbon (GNR) MOSFETs by using first-principles bandstructures and ballistic current estimation based on the ¿top-of-the-barrier¿ model. As a result, we found that SNW-MOSFETs display a strong orientation dependence via the atomistic bandstructure effects, and SNW-MOSFETs provide smaller intrinsic device delays than Si ultrathin-body MOSFETs when the wire size is scaled smaller than 3 nm. Furthermore, GNR-MOSFETs are found to exhibit promising device performance if the ribbon width is designed to be larger than a few nanometers and a finite band gap can be established.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0018-9383
1557-9646
DOI:10.1109/TED.2009.2037365