Comparisons of Performance Potentials of Silicon Nanowire and Graphene Nanoribbon MOSFETs Considering First-Principles Bandstructure Effects
In this paper, we investigate the performance potentials of silicon nanowire (SNW) and semiconducting graphene nanoribbon (GNR) MOSFETs by using first-principles bandstructures and ballistic current estimation based on the ¿top-of-the-barrier¿ model. As a result, we found that SNW-MOSFETs display a...
Saved in:
Published in | IEEE transactions on electron devices Vol. 57; no. 2; pp. 406 - 414 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.02.2010
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, we investigate the performance potentials of silicon nanowire (SNW) and semiconducting graphene nanoribbon (GNR) MOSFETs by using first-principles bandstructures and ballistic current estimation based on the ¿top-of-the-barrier¿ model. As a result, we found that SNW-MOSFETs display a strong orientation dependence via the atomistic bandstructure effects, and SNW-MOSFETs provide smaller intrinsic device delays than Si ultrathin-body MOSFETs when the wire size is scaled smaller than 3 nm. Furthermore, GNR-MOSFETs are found to exhibit promising device performance if the ribbon width is designed to be larger than a few nanometers and a finite band gap can be established. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/TED.2009.2037365 |