Analytic properties of the electromagnetic field of binary compact stars and electromagnetic precursors to gravitational waves

Abstract We analytically study the properties of the electromagnetic field in the vacuum around close binary compact stars containing at least one neutron star. We show that the orbital motion of the neutron star induces high multipole modes of the electromagnetic field just before the merger. These...

Full description

Saved in:
Bibliographic Details
Published inProgress of theoretical and experimental physics Vol. 2020; no. 10
Main Authors Wada, Tomoki, Shibata, Masaru, Ioka, Kunihito
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 01.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract We analytically study the properties of the electromagnetic field in the vacuum around close binary compact stars containing at least one neutron star. We show that the orbital motion of the neutron star induces high multipole modes of the electromagnetic field just before the merger. These modes are superimposed to form a spiral arm configuration, and its edge is found to be a likely site for magnetic reconnection. These modes also enhance the total Poynting flux from neutron star binaries by a factor of 2–4. We also indicate that the electric field induced by the orbital motion leads to a magnetosphere around binaries and estimate its plasma density, which has a different parameter dependence than the Goldreich–Julian density. With these properties, we discuss possible electromagnetic counterparts to gravitational wave events, and identify radio precursors, such as fast radio bursts, as the most promising observational targets.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2050-3911
2050-3911
DOI:10.1093/ptep/ptaa126