Posttranslational N-glycosylation takes place during the normal processing of human coagulation factor VII

N-glycosylation is normally a cotranslational process that occurs during translocation of the nascent protein to the endoplasmic reticulum. In the present study, however, we demonstrate posttranslational N-glycosylation of recombinant human coagulation factor VII (FVII) in CHO-K1 and 293A cells. Hum...

Full description

Saved in:
Bibliographic Details
Published inGlycobiology (Oxford) Vol. 15; no. 5; pp. 541 - 547
Main Authors Bolt, Gert, Kristensen, Claus, Steenstrup, Thomas Dock
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.05.2005
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:N-glycosylation is normally a cotranslational process that occurs during translocation of the nascent protein to the endoplasmic reticulum. In the present study, however, we demonstrate posttranslational N-glycosylation of recombinant human coagulation factor VII (FVII) in CHO-K1 and 293A cells. Human FVII has two N-glycosylation sites (N145 and N322). Pulse-chase labeled intracellular FVII migrated as two bands corresponding to FVII with one and two N-glycans, respectively. N-glycosidase treatment converted both of these band into a single band, which comigrated with mutated FVII without N-glycans. Immediately after pulse, most labeled intracellular FVII had one N-glycan, but during a 1-h chase, the vast majority was processed into FVII with two N-glycans, demonstrating posttranslational N-glycosylation of FVII. Pulse-chase analysis of N-glycosylation site knockout mutants demonstrated cotranslational glycosylation of N145 but primarily or exclusively posttranslational glycosylation of N322. The posttranslational N-glycosylation appeared to take place in the same time frame as the folding of nascent FVII into a secretion-competent conformation, indicating a link between the two processes. We propose that the cotranslational conformation(s) of FVII are unfavorable for glycosylation at N332, whereas a more favorable conformation is obtained during the posttranslational folding. This is the first documentation of posttranslational N-glycosylation of a non-modified protein in mammalian cells with an intact N-glycosylation machinery. Thus, the present study demonstrates that posttranslational N-glycosylation can be a part of the normal processing of glycoproteins.
Bibliography:istex:F84A290620A944CCF3910FB379759F4806857BBF
local:032
ark:/67375/HXZ-XB9L9L55-P
1To whom correspondence should be addressed; e-mail: bolt@novonordisk.com
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0959-6658
1460-2423
DOI:10.1093/glycob/cwi032