The impact of eotaxin- and IL-5-induced adhesion and transmigration on eosinophil activity markers

Eosinophils accumulate at sites of allergic inflammation, and play important roles in asthma/allergic disorders. The mechanism of eosinophil recruitment into tissues is not fully understood. In this study, we evaluated whether adhesion and/or transmigration, in the presence of IL-5 and eotaxin, alte...

Full description

Saved in:
Bibliographic Details
Published inInflammation Vol. 24; no. 1; pp. 73 - 87
Main Authors Fernvik, E, Lundahl, J, Halldén, G
Format Journal Article
LanguageEnglish
Published United States Springer Nature B.V 2000
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Eosinophils accumulate at sites of allergic inflammation, and play important roles in asthma/allergic disorders. The mechanism of eosinophil recruitment into tissues is not fully understood. In this study, we evaluated whether adhesion and/or transmigration, in the presence of IL-5 and eotaxin, alter the expression of CD9, CD11b, the beta1alpha4-integrin, and the EG2-epitope on intracellular ECP. We also investigated whether CD9 is involved in the adhesion process. With flow cytometry the surface expression of CD9, CD11b and the beta1alpha4-integrin, and the intracellular expression of EG2, were analyzed before, and after transmigration/adhesion to fibronectin. To evaluate the eventual role of CD9 in adhesion, eosinophils were preincubated with monoclonal antibodies to CD9. We observed decreased expression of CD9, and increased expression of CD11b on eosinophils, after adhesion and transmigration. The transmigration did not change the expression of the beta1alpha4-integrin or EG2, whereas the adhesion resulted in a decreased EG2 expression. Antibodies to CD9 decreased the adhesion property of eosinophils. The eosinophils are activated after both adhesion and transmigration by means of decreased CD9 and increased CD11b expression. The expression of the EG2-epitope on intracellular ECP was decreased when eosinophils adhered to fibronectin, probably due to degranulation. Our results also indicate that CD9 is involved in the adhesion of eosinophils to fibronectin.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0360-3997
1573-2576
DOI:10.1023/a:1006940109869