Novel Strategy for the Synthesis of Ultra‐Stable Single‐Site Mo‐ZSM‐5 Zeolite Nanocrystals
The current energy transition presents many technological challenges, such as the development of highly stable catalysts. Herein, we report a novel “top‐down” synthesis approach for preparation of a single‐site Mo‐containing nanosized ZSM‐5 zeolite which has atomically dispersed framework‐molybdenum...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 59; no. 44; pp. 19553 - 19560 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
26.10.2020
Wiley-VCH Verlag |
Edition | International ed. in English |
Series | Functional Porous Materials Chemistry |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The current energy transition presents many technological challenges, such as the development of highly stable catalysts. Herein, we report a novel “top‐down” synthesis approach for preparation of a single‐site Mo‐containing nanosized ZSM‐5 zeolite which has atomically dispersed framework‐molybdenum homogenously distributed through the zeolite crystals. The introduction of Mo heals most of the native point defects in the zeolite structure resulting in an extremely stable material. The important features of this single‐site Mo‐containing ZSM‐5 zeolite are provided by an in‐depth spectroscopic and microscopic analysis. The material demonstrates superior thermal (up to 1000 °C), hydrothermal (steaming), and catalytic (converting methane to hydrogen and higher hydrocarbons) stability, maintaining the atomically disperse Mo, structural integrity of the zeolite, and preventing the formation of silanols.
A single‐site Mo‐containing nanosized ZSM‐5 zeolite with atomically dispersed framework‐molybdenum is synthesized. The zeolite displays superior stability, maintaining the atomically dispersed Mo, structural integrity of the zeolite, and preventing the formation of silanols. |
---|---|
Bibliography: | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1433-7851 1521-3773 |
DOI: | 10.1002/anie.202006524 |