Degradation of atrazine by modified stepwise-Fenton’s processes

The removal of atrazine (ATZ) by stepwise Fenton’s processes (stepwise-FP) was studied and the system models were developed through the examination of reaction kinetics. The study compared the performance of the removal of ATZ by conventional FP with stepwise-FP, where the total dose of H 2O 2 was s...

Full description

Saved in:
Bibliographic Details
Published inChemosphere (Oxford) Vol. 67; no. 4; pp. 755 - 761
Main Authors Chu, W., Chan, K.H., Kwan, C.Y., Choi, K.Y.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.03.2007
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The removal of atrazine (ATZ) by stepwise Fenton’s processes (stepwise-FP) was studied and the system models were developed through the examination of reaction kinetics. The study compared the performance of the removal of ATZ by conventional FP with stepwise-FP, where the total dose of H 2O 2 was split and inputted into the system at different times and/or quantities. The performance of stepwise-FP was found to be better than that of conventional FP. This was probably due to the minimization of the peak concentration of H 2O 2 in the solution, which reduced the probability that valuable H 2O 2 and hydroxyl radicals would be consumed in forming weaker radicals. The reaction kinetics of the decay of ATZ in stepwise-FP was found to be a two-stage process; and in each stage, fast decay followed by stagnant decay was observed. Two characterized constants (the initial decay rate and the oxidative capacity) were introduced and were found to be useful in quantifying the stepwise-FP. The models for predicting stepwise-FP with respect to different dosing times and/or asymmetrical doses were developed, and were found to be very useful for evaluating the system performance and/or for process design.
Bibliography:http://dx.doi.org/10.1016/j.chemosphere.2006.10.039
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0045-6535
1879-1298
DOI:10.1016/j.chemosphere.2006.10.039