Double immunofluorescent staining using two unconjugated primary antisera raised in the same species

Monoclonal antibodies (MAbs) capable of recognizing developmental stage-specific neuronal epitopes are becoming increasingly available. Because most of these MAbs are raised in a single species (mouse), simultaneous immunofluorescent detection of multiple epitopes has been difficult. We have taken a...

Full description

Saved in:
Bibliographic Details
Published inThe journal of histochemistry and cytochemistry Vol. 44; no. 11; pp. 1331 - 1335
Main Authors Shindler, KS, Roth, KA
Format Journal Article
LanguageEnglish
Published United States Histochemical Soc 01.11.1996
SAGE Publications
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Monoclonal antibodies (MAbs) capable of recognizing developmental stage-specific neuronal epitopes are becoming increasingly available. Because most of these MAbs are raised in a single species (mouse), simultaneous immunofluorescent detection of multiple epitopes has been difficult. We have taken advantage of the high sensitivity of tyramide signal amplification to develop a protocol that permits simultaneous detection of two antibodies raised in the same species. One primary antibody was applied at a concentration below the detection limit of fluorescently labeled secondary antibodies, yet sufficient for detection with the tyramide system. This first primary antibody was then effectively neglected during application of a second primary antibody that was detected by conventional fluorescently labeled secondary antibodies. Specifically, dual labeling for nestin and MAP2 was used to distinguish neuronal stem cells and precursor cells from immature postmitotic neurons, and synapsin I and GAP43 immunostaining was used to distinguish neurons with established synaptic connections from developing neurons. We have used this technique for staining both tissue sections and cultured cells from the embryonic mouse brain. This technique should be widely applicable and offers a simple procedure for simultaneously detecting two antigens when antibodies from only a single species are available.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-1554
1551-5044
DOI:10.1177/44.11.8918908