Targeting Mitochondria and Oxidative Stress in Cancer- and Chemotherapy-Induced Muscle Wasting

Cancer is frequently associated with the early appearance of cachexia, a multifactorial wasting syndrome. If not present at diagnosis, cachexia develops either as a result of tumor progression or as a side effect of anticancer treatments, especially of standard chemotherapy, eventually representing...

Full description

Saved in:
Bibliographic Details
Published inAntioxidants & redox signaling Vol. 38; no. 4-6; p. 352
Main Authors Huot, Joshua R, Baumfalk, Dryden, Resendiz, Aridai, Bonetto, Andrea, Smuder, Ashley J, Penna, Fabio
Format Journal Article
LanguageEnglish
Published United States 01.02.2023
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Cancer is frequently associated with the early appearance of cachexia, a multifactorial wasting syndrome. If not present at diagnosis, cachexia develops either as a result of tumor progression or as a side effect of anticancer treatments, especially of standard chemotherapy, eventually representing the direct cause of death in up to one-third of all cancer patients. Cachexia, within its multiorgan affection, is characterized by severe loss of muscle mass and function, representing the most relevant subject of preclinical and clinical investigation. The pathogenesis of muscle wasting in cancer- and chemotherapy-induced cachexia is complex, and encompasses heightened protein catabolism and reduced anabolism, disrupted mitochondria and energy metabolism, and even neuromuscular junction dismantling. The mechanisms underlying these alterations are still controversial, especially concerning the molecular drivers that could be targeted for anticachexia therapies. Inflammation and mitochondrial oxidative stress are among the principal candidates; the latter being extensively discussed in the present review. Several approaches have been tested to modulate the redox homeostasis in tumor hosts, and to counteract cancer- and chemotherapy-induced muscle wasting, from exercise training to distinct classes of direct or indirect antioxidants. We herein report the most relevant results obtained from both preclinical and clinical trials. Including the assessment and the treatment of altered redox balance in the clinical management of cancer patients is still a big challenge. The available evidence suggests that fortifying the antioxidant defenses by either pharmacological or nonpharmacological strategies will likely improve cachexia and eventually the outcome of a broad cancer patient population. 38, 352-370.
ISSN:1557-7716
DOI:10.1089/ars.2022.0149