Trajectory-Ordered Objectives for Self-Supervised Representation Learning of Temporal Healthcare Data Using Transformers: Model Development and Evaluation Study

The growing availability of electronic health records (EHRs) presents an opportunity to enhance patient care by uncovering hidden health risks and improving informed decisions through advanced deep learning methods. However, modeling EHR sequential data, that is, patient trajectories, is challenging...

Full description

Saved in:
Bibliographic Details
Published inJMIR medical informatics Vol. 13; p. e68138
Main Authors Amirahmadi, Ali, Etminani, Farzaneh, Björk, Jonas, Melander, Olle, Ohlsson, Mattias
Format Journal Article
LanguageEnglish
Published Canada JMIR Publications 04.06.2025
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The growing availability of electronic health records (EHRs) presents an opportunity to enhance patient care by uncovering hidden health risks and improving informed decisions through advanced deep learning methods. However, modeling EHR sequential data, that is, patient trajectories, is challenging due to the evolving relationships between diagnoses and treatments over time. Significant progress has been achieved using transformers and self-supervised learning. While BERT-inspired models using masked language modeling (MLM) capture EHR context, they often struggle with the complex temporal dynamics of disease progression and interventions. This study aims to improve the modeling of EHR sequences by addressing the limitations of traditional transformer-based approaches in capturing complex temporal dependencies. We introduce Trajectory Order Objective BERT (Bidirectional Encoder Representations from Transformers; TOO-BERT), a transformer-based model that advances the MLM pretraining approach by integrating a novel TOO to better learn the complex sequential dependencies between medical events. TOO-Bert enhanced the learned context by MLM by pretraining the model to distinguish ordered sequences of medical codes from permuted ones in a patient trajectory. The TOO is enhanced by a conditional selection process that focus on medical codes or visits that frequently occur together, to further improve contextual understanding and strengthen temporal awareness. We evaluate TOO-BERT on 2 extensive EHR datasets, MIMIC-IV hospitalization records and the Malmo Diet and Cancer Cohort (MDC)-comprising approximately 10 and 8 million medical codes, respectively. TOO-BERT is compared against conventional machine learning methods, a transformer trained from scratch, and a transformer pretrained on MLM in predicting heart failure (HF), Alzheimer disease (AD), and prolonged length of stay (PLS). TOO-BERT outperformed conventional machine learning methods and transformer-based approaches in HF, AD, and PLS prediction across both datasets. In the MDC dataset, TOO-BERT improved HF and AD prediction, increasing area under the receiver operating characteristic curve (AUC) scores from 67.7 and 69.5 with the MLM-pretrained Transformer to 73.9 and 71.9, respectively. In the MIMIC-IV dataset, TOO-BERT enhanced HF and PLS prediction, raising AUC scores from 86.2 and 60.2 with the MLM-pretrained Transformer to 89.8 and 60.4, respectively. Notably, TOO-BERT demonstrated strong performance in HF prediction even with limited fine-tuning data, achieving AUC scores of 0.877 and 0.823, compared to 0.839 and 0.799 for the MLM-pretrained Transformer, when fine-tuned on only 50% (442/884) and 20% (176/884) of the training data, respectively. These findings demonstrate the effectiveness of integrating temporal ordering objectives into MLM-pretrained models, enabling deeper insights into the complex temporal relationships inherent in EHR data. Attention analysis further highlights TOO-BERT's capability to capture and represent sophisticated structural patterns within patient trajectories, offering a more nuanced understanding of disease progression.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2291-9694
2291-9694
DOI:10.2196/68138