Biogenesis of Plant Prevacuolar Multivesicular Bodies
Plant prevacuolar compartments (PVCs), or multivesicular bodies (MVBs), are single membrane-bound organelles that play important roles in mediating protein trafficking to vacuoles in the secretory pathway. PVC/MVB also serves as a late endosome in the endocytic pathway in plants. Since the plant PVC...
Saved in:
Published in | Molecular plant Vol. 9; no. 6; pp. 774 - 786 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Inc
06.06.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Plant prevacuolar compartments (PVCs), or multivesicular bodies (MVBs), are single membrane-bound organelles that play important roles in mediating protein trafficking to vacuoles in the secretory pathway. PVC/MVB also serves as a late endosome in the endocytic pathway in plants. Since the plant PVC was iden- tified as an MVB more than 10 years ago,-great progress has been made toward the understanding of PVC/ MVB function and biogenesis in plants. In this review, we first summarize previous research into the iden- tification and characterization of plant PVCs/MVBs, and then highlight recent advances on the mechanisms underlying intraluminal vesicle formation and maturation of plant PVCs/MVBs. In addition, we discuss the possible crosstalk that appears to occur between PVCs/MVBs and autophagosomes during autophagy in plants. Finally, we list some open questions and present future perspectives in this field. |
---|---|
Bibliography: | 31-2013/Q organelle biogenesis, prevacuolar compartment, multivesicular body, vacuolar sorting receptor, Rab5GTPase Plant prevacuolar compartments (PVCs), or multivesicular bodies (MVBs), are single membrane-bound organelles that play important roles in mediating protein trafficking to vacuoles in the secretory pathway. PVC/MVB also serves as a late endosome in the endocytic pathway in plants. Since the plant PVC was iden- tified as an MVB more than 10 years ago,-great progress has been made toward the understanding of PVC/ MVB function and biogenesis in plants. In this review, we first summarize previous research into the iden- tification and characterization of plant PVCs/MVBs, and then highlight recent advances on the mechanisms underlying intraluminal vesicle formation and maturation of plant PVCs/MVBs. In addition, we discuss the possible crosstalk that appears to occur between PVCs/MVBs and autophagosomes during autophagy in plants. Finally, we list some open questions and present future perspectives in this field. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ISSN: | 1674-2052 1752-9867 1752-9867 |
DOI: | 10.1016/j.molp.2016.01.011 |