Insulin-Like Growth Factor I Induces Preferential Degradation of Insulin Receptor Substrate-2 through the Phosphatidylinositol 3-Kinase Pathway in Human Neuroblastoma Cells

Insulin receptor substrate (IRS) signaling is regulated through serine/threonine phosphorylation, with subsequent IRS degradation. This study examines the differences in IRS-1 and IRS-2 degradation in human neuroblastoma cells. SH-EP cells are glial-like, express low levels of the type I IGF-I recep...

Full description

Saved in:
Bibliographic Details
Published inEndocrinology (Philadelphia) Vol. 146; no. 12; pp. 5350 - 5357
Main Authors Kim, Bhumsoo, van Golen, Cynthia M, Feldman, Eva L
Format Journal Article
LanguageEnglish
Published Bethesda, MD Endocrine Society 01.12.2005
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Insulin receptor substrate (IRS) signaling is regulated through serine/threonine phosphorylation, with subsequent IRS degradation. This study examines the differences in IRS-1 and IRS-2 degradation in human neuroblastoma cells. SH-EP cells are glial-like, express low levels of the type I IGF-I receptor (IGF-IR) and IRS-2 and high levels of IRS-1. SH-SY5Y cells are neuroblast-like, with high levels of IGF-IR and IRS-2 but virtually no IRS-1. When stimulated with IGF-I, IRS-1 expression remains constant in SH-EP cells; however, IRS-2 in SH-SY5Y cells shows time- and concentration-dependent degradation, which requires IGF-IR activation. SH-EP cells transfected with IRS-2 and SH-SY5Y cells transfected with IRS-1 show that only IRS-2 is degraded by IGF-I treatment. When SH-EP cells are transfected with IGF-IR or suppressor of cytokine signaling, IRS-1 is degraded by IGF-I treatment. IRS-1 and -2 degradation are almost completely blocked by phosphatidylinositol 3-kinase inhibitors and partially by proteasome inhibitors. In summary, 1) IRS-2 is more sensitive to IGF-I-mediated degradation; 2) IRS degradation is mediated by phosphatidylinositol 3-kinase and proteasome sensitive pathways; and 3) high levels of IGF-IR, and possibly the subsequent increase in Akt phosphorylation, are required for efficient IRS degradation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0013-7227
1945-7170
DOI:10.1210/en.2005-0356