PET Imaging of Fructose Metabolism in a Rodent Model of Neuroinflammation with 6-[18F]fluoro-6-deoxy-D-fructose

Fluorine-18 labeled 6-fluoro-6-deoxy-D-fructose (6-[18F]FDF) targets the fructose-preferred facilitative hexose transporter GLUT5, which is expressed predominantly in brain microglia and activated in response to inflammatory stimuli. We hypothesize that 6-[18F]FDF will specifically image microglia f...

Full description

Saved in:
Bibliographic Details
Published inMolecules (Basel, Switzerland) Vol. 27; no. 23; p. 8529
Main Authors Boyle, Amanda J., Murrell, Emily, Tong, Junchao, Schifani, Christin, Narvaez, Andrea, Wuest, Melinda, West, Frederick, Wuest, Frank, Vasdev, Neil
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 03.12.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Fluorine-18 labeled 6-fluoro-6-deoxy-D-fructose (6-[18F]FDF) targets the fructose-preferred facilitative hexose transporter GLUT5, which is expressed predominantly in brain microglia and activated in response to inflammatory stimuli. We hypothesize that 6-[18F]FDF will specifically image microglia following neuroinflammatory insult. 6-[18F]FDF and, for comparison, [18F]FDG were evaluated in unilateral intra-striatal lipopolysaccharide (LPS)-injected male and female rats (50 µg/animal) by longitudinal dynamic PET imaging in vivo. In LPS-injected rats, increased accumulation of 6-[18F]FDF was observed at 48 h post-LPS injection, with plateaued uptake (60–120 min) that was significantly higher in the ipsilateral vs. contralateral striatum (0.985 ± 0.047 and 0.819 ± 0.033 SUV, respectively; p = 0.002, n = 4M/3F). The ipsilateral–contralateral difference in striatal 6-[18F]FDF uptake expressed as binding potential (BPSRTM) peaked at 48 h (0.19 ± 0.11) and was significantly decreased at one and two weeks. In contrast, increased [18F]FDG uptake in the ipsilateral striatum was highest at one week post-LPS injection (BPSRTM = 0.25 ± 0.06, n = 4M). Iba-1 and GFAP immunohistochemistry confirmed LPS-induced activation of microglia and astrocytes, respectively, in ipsilateral striatum. This proof-of-concept study revealed an early response of 6-[18F]FDF to neuroinflammatory stimuli in rat brain. 6-[18F]FDF represents a potential PET radiotracer for imaging microglial GLUT5 density in brain with applications in neuroinflammatory and neurodegenerative diseases.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules27238529