Arabidopsis Transcription Factors SPL1 and SPL12 Confer Plant Thermotolerance at Reproductive Stage

Plant reproductive organs are vulnerable to heat, but regulation of heat-shock responses in inflorescence is largely uncharacterized. Here, we report that two of the SQUAMOSA PROMOTER BINDING PROTEIN- LIKE (SPL) transcriptional factors in Arabidopsis, SPL1 and SPL12, act redundantly in thermotoleran...

Full description

Saved in:
Bibliographic Details
Published inMolecular plant Vol. 10; no. 5; pp. 735 - 748
Main Authors Chao, Lu-Men, Liu, Yao-Qian, Chen, Dian-Yang, Xue, Xue-Yi, Mao, Ying-Bo, Chen, Xiao-Ya
Format Journal Article
LanguageEnglish
Published England Elsevier Inc 01.05.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Plant reproductive organs are vulnerable to heat, but regulation of heat-shock responses in inflorescence is largely uncharacterized. Here, we report that two of the SQUAMOSA PROMOTER BINDING PROTEIN- LIKE (SPL) transcriptional factors in Arabidopsis, SPL1 and SPL12, act redundantly in thermotolerance at the reproductive stage. The spll-1 sp112-1 inflorescences displayed hypersensitivity to heat stress, whereas overexpression of SPL 1 or SPL 12 enhanced the thermotolerance in both Arabidopsis and tobacco. RNA sequencing revealed 1939 upregulated and 1479 downregulated genes in wild-type inflorescence upon heat stress, among which one-quarter (1,040) was misregulated in spll-1 sp112-1, indicating that SPL1 and SPL12 contribute greatly to the heat-triggered transcriptional reprogramming in inflorescence. Notably, heat stress induced a large number of abscisic acid (ABA) responsive genes, of which -39% were disturbed in heat induction in spll-1 sp112-1 inflorescence. Preapplication of ABA and overex- pression of SPL1 restored the inflorescence thermotolerance in spll-1 sp112-1 and in the ABA biosynthesis mutant aba2-1, but not in the pyl sextuple mutant defective in ABA receptors PYR 1/PYL 1/PYL2/PYL4/PYL5/ PYL8. Thus, inflorescence thermotolerance conferred by SPL1 and SPL2 involves PYL-mediated ABA signaling. The molecular network consisting of SPL1 and SPL12 illustrated here shed new light on the mechanisms of plant thermotolerance at the reproductive stage.
Bibliography:31-2013/Q
Plant reproductive organs are vulnerable to heat, but regulation of heat-shock responses in inflorescence is largely uncharacterized. Here, we report that two of the SQUAMOSA PROMOTER BINDING PROTEIN- LIKE (SPL) transcriptional factors in Arabidopsis, SPL1 and SPL12, act redundantly in thermotolerance at the reproductive stage. The spll-1 sp112-1 inflorescences displayed hypersensitivity to heat stress, whereas overexpression of SPL 1 or SPL 12 enhanced the thermotolerance in both Arabidopsis and tobacco. RNA sequencing revealed 1939 upregulated and 1479 downregulated genes in wild-type inflorescence upon heat stress, among which one-quarter (1,040) was misregulated in spll-1 sp112-1, indicating that SPL1 and SPL12 contribute greatly to the heat-triggered transcriptional reprogramming in inflorescence. Notably, heat stress induced a large number of abscisic acid (ABA) responsive genes, of which -39% were disturbed in heat induction in spll-1 sp112-1 inflorescence. Preapplication of ABA and overex- pression of SPL1 restored the inflorescence thermotolerance in spll-1 sp112-1 and in the ABA biosynthesis mutant aba2-1, but not in the pyl sextuple mutant defective in ABA receptors PYR 1/PYL 1/PYL2/PYL4/PYL5/ PYL8. Thus, inflorescence thermotolerance conferred by SPL1 and SPL2 involves PYL-mediated ABA signaling. The molecular network consisting of SPL1 and SPL12 illustrated here shed new light on the mechanisms of plant thermotolerance at the reproductive stage.
plant thermotolerance, inflorescence, SPL, transcription factor, abscisic acid
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-2052
1752-9867
1752-9867
DOI:10.1016/j.molp.2017.03.010